cho các số dương x và y thoả mãn \(\frac{1}{x^2}+\frac{1}{y^2}=\frac{1}{2}\) .Tìm giá trị nhỏ nhất của biểu thức A=xy+2017
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TK
2
15 tháng 5 2018
\(f\left(x\right)=2x^2-12x+14=2x^2-12x+18-4=2\left(x^2-6x+9\right)-4=2\left(x-3\right)^2-4\)
\(f\left(x\right)\ge-4\)
Do đó giá trị nhỏ nhất của f(x) là -4 khi x=3
WT
0
TL
1
15 tháng 5 2018
Ta có:
\(2017\left(ab+cd\right)=ab\left(c^2+d^2\right)+cd\left(a^2+b^2\right)\)
\(=\left(ad+bc\right)\left(bd+ac\right)=0\)
\(\Rightarrow ab+cd=0\)
L
0
\(\frac{1}{2}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\)
\(\Leftrightarrow xy\ge4\)
\(\Rightarrow A=xy+2017\ge4+2017=2021\)