cho phương trình \(^{x^2}\)+ax+b=0
CMR nếu a,b là các số nguyên lẻ thì phương trình đã cho không có nghiệm nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem lại đề.
Ta thử \(\hept{\begin{cases}a=4\\b=4\end{cases}}\) thì ta có:
\(\sqrt{4}+\sqrt{4}=2+2=4>2\)
Nhưng \(\sqrt[3]{4}+\sqrt[3]{4}\approx3,1748< 4+4=8\)
Câu này vô google cũng có nè -- mik cho bạn cái lik bạn gõ nó ra :
https://diendantoanhoc.net/topic/84873-leftbeginmatrix-2x2xy-y2-5xy20x2y2xy-40-endmatrixright/
Đặt cho dễ nhìn.
Đặt: \(\sqrt{a}=x\Rightarrow a=x^2;a\sqrt{a}=x^3\)
\(\sqrt{b}=y\Rightarrow b=y^2;b\sqrt{b}=y^3\)
\(\Leftrightarrow\frac{x^3+y^3}{x+y}-xy=\left(x-y\right)^2\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x+y}-xy=x^2-2xy+y^2\)
\(\Leftrightarrow x^2-xy+y^2-xy=x^2-2xy+y^2\)
\(\Leftrightarrow x^2-2xy+y^2=x^2-2xy+y^2\)
\(\Rightarrowđpcm\)
Để phương trình đã cho có nghiệm nguyên thì
\(\Delta=a^2-4b\) phải là số chính phương lẻ.
\(\Rightarrow\Delta:8\)dư 1 (1)
Theo đề bài thì a, b lẻ nên ta đặt
\(\hept{\begin{cases}a=2m+1\\b=2n+1\end{cases}}\)
\(\Rightarrow\Delta=\left(2m+1\right)^2-4\left(2n+1\right)\)
\(=-8n+4m^2+4m-3\)
\(=-8n+4m\left(m+1\right)+8-5\)
\(\Rightarrow\Delta:8\) dư 5 (2)
Ta thấy (1) và (2) mâu thuẫn nhau nên nếu a, b lẻ thì phương trình không có nghiệm nguyên.
Sửa cái cuối thành - 8 + 5 nhé. M bấm nhầm