Bài toán :
Cho a + b = 1
Hãy tính : a3 + b3 + a.b.3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các bạn học sinh ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math không thể áp dụng các biện pháp như trừ điểm, thậm chí mở vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần
Ta có : ( x - 2 )2 \(\ge\)0 \(\Leftrightarrow\)x2 - 4x + 4 \(\ge\)0
\(\Rightarrow\) x2 \(\ge\)4x - 4 \(\Rightarrow\)x2 \(\ge\)4 . ( x - 1 ) \(\Rightarrow\)\(\frac{x^2}{x-1}\)\(\ge\)4
\(\Rightarrow\frac{4a^2}{a-1}+\frac{5b^2}{b-1}+\frac{3c^2}{c-1}\ge4.4+5.4+3.4=48\)
Đặt \(\left(a;b;c\right)=\left(2^x;2^y;2^z\right)\)\(\left(a,b,c>0\right)\)\(\Rightarrow\)\(a+b+c\ge3\sqrt[3]{2^{x+y+z}}=3\sqrt[3]{2^6}=12\)
bđt đề bài \(\Leftrightarrow\)\(a^3+b^3+c^3\ge4\left(a^2+b^2+c^2\right)\)
Dễ dàng chứng minh bđt trên với bđt phụ \(a^3-4a^2\ge16a-64\)\(\Leftrightarrow\)\(\left(a-4\right)^2\left(a+4\right)\ge0\) luon dung
\(\Rightarrow\)\(a^3+b^3+c^3\ge4\left(a^2+b^2+c^2\right)+16\left(a+b+c\right)-192\ge4\left(a^2+b^2+c^2\right)\)
Dấu "=" xảy ra khi \(x=y=z=2\)
Nhận thấy :
\(3x^2-3x+1=3\left(x^2-x\right)+1=3\left(x-\frac{1}{2}\right)^2-\frac{3}{4}+1=3\left(x-\frac{1}{2}\right)^2+\frac{1}{4}>0\)
Nên phương trình trên
<=> \(3x^2-3x+1=1-2x\)
<=> \(3x^2-x=0\)
<=> \(x\left(3x-1\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x=\frac{1}{3}\end{cases}}\)
Vậy .................
Để phương trình trên có nghiệm thì \(1-2x\ge0\Leftrightarrow x\le\frac{1}{2}\)
Ta có: \(3x^2-3x+1=3\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=3\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}>0\)
Vậy nên \(\left|3x^2-3x+1\right|=3x^2-3x+1\)
Phương trình trở thành:
\(3x^2-3x+1=1-2x\)
\(\Leftrightarrow3x^2-x=0\Leftrightarrow x\left(3x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{3}\end{cases}}\left(tmđk\right)\)
Vậy phương trình có 2 nghiệm x = 0 hoặc \(x=\frac{1}{3}.\)
Kẻ \(AE\perp BD\)
Vì \(OK//HC\)nên theo hệ quả Ta - lét ta có :
\(\frac{AO}{AC}=\frac{OK}{HC}\)\(\Rightarrow AO.HC=OK.AC\)
Ta lại có : \(AD.BI.CH=2.S_{ABD}.CH\)
Mà \(BD.CE=2.S_{ABD}\)\(,OA.HC=OK.AC\)\(,AO\ge AE\)
nên \(AD.BI.CH=2.S_{ABD}.CH=BD.CE.CH\le BD.AO.CH=BD.OK.AC\)
Dấu \("="\)xảy ra khi \(AE=AO\)hay \(AC\perp BD\)
Đặt \(M=a^3+b^3+3ab\)
Ta có :\(M=a^3+b^3+3ab=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\)
Mà \(a+b=1\)
\(\Rightarrow M=a^2-ab+b^2+3ab=a^2+2ab+b^2\)
\(\Rightarrow M=\left(a+b\right)^2=1^2=1\)(do a+b=1)
Vậy \(M=a^3+b^3+3ab=1\)
Xong rồi đấy,bạn nhé!!!!!!!!!!!!!!!
THANK YOU VERY MUCH!!!