Có cách nào dễ nhìn thấy kiêu dậy nè
đổi từ ab+ac+b^2+bc=(a+b)(b+c)
mik có bài tập là đổi \(_{3a^2b+3ab^2-3b^2c+3b^2c-3c^2a+3ca^2}\)=\(3.\left(a-b\right).\left(b-c\right).\left(c-a\right)\)
máy bạn chỉ mik
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b^2+c^2-a^2-2bc=\left(b^2-2bc+c^2\right)-a^2=\left(b-c\right)^2-a^2=\left(b-c-a\right)\left(b-c+a\right)\)
\(=\left(b-\left(c+a\right)\right)\left(b-\left(c-a\right)\right)\)
vì \(b< c+a;b>c-a\)(bđt tam giác )\(\Rightarrow b-\left(c+a\right)< 0;b-\left(c-a\right)>0\Rightarrow\left(b-\left(c+a\right)\right)\left(b-\left(c-a\right)\right)< 0\)
\(\Rightarrow b^2+c^2-a^2-2bc< 0\Rightarrow b^2+c^2-a^2< 2bc\)\(\Rightarrow b^2+c^2-a^2< \left(2bc\right)^2=4b^2c^2\)
Bài làm:
a, 1-4x2
=1-(2x)2
=(1-2x).(1+2x)
b, 8-27x3
=23-(3x)3
=(2-3x).(4+6x+9x2)
Các câu còn lại bạn dùng hằng đẳng thức là phân tích được ra thôi
1 - 4x^2
= 1^2 - ( 2x )^2
= ( 1 - 2x ) ( 1 + 2x )
8 - 27x^ 3
= 2^3 - ( 3x )^3
= ( 2 - 3x ) [ 2^2 + 2 * 3x + ( 3x )^2 ]
= ( 2 - 3x ) ( 4 + 6x + 9x^2 )
= ( 2 - 3x ) ( 9x^2 + 6x + 4 )
27 + 27x + 9x^2 + x^3
= x^3 + 9x^2 + 27x + 27
= x^3 + 3x^2 + 6x^2 + 18x + 9x + 27
= x^2 ( x + 3 ) + 6x ( x + 3 ) + 9 ( x + 3 )
= ( x + 3 ) ( x^2 + 6x + 9 )
= ( x + 3 ) ( x + 3 )^2
= ( x + 3 )^3
x^2 + 4x - 5
= x^2 - x + 5x - 5
= x ( x - 1 ) + 5 ( x - 1 )
= ( x + 1 ) ( x - 5 )
Bạn câu hỏi sau ghi rõ đề ra nhé ghi như thế thì ai mà hiểu được
A=\(4\left(x-\frac{1}{2}\right).\left(x+\frac{1}{2}\right).\left(4x^2+1\right)\)
\(=4.\left(x^2-\frac{1}{4}\right).\left(4x^2+1\right)\)
Rồi giờ ngồi khai triển ra rồi tính nhé bạn
:) chắc là mình hiểu lộn đề của bạn hay sao ý
:) bạn cứ tính ra nhé sử dụng hằng đẳng thức và một số công thức tính toán là sẽ tính được
Ta có : \(\left(x-\frac{1}{2}\right).\left(x+\frac{1}{2}\right).\left(4x^2+1\right)\)
\(=\left(x^2-\frac{1}{4}\right)\left(4x^2+1\right)\)
\(=4x^4-x^2+x^2-\frac{1}{4}=4x^4-\frac{1}{4}\)
Ta có: \(\frac{x^3}{x^2+z}=\frac{x^3+xz}{x^2+z}-\frac{xz}{x^2+z}\ge x-\frac{xz}{2x\sqrt{z}}=x-\frac{\sqrt{z}}{2}\)
Lại có: \(\sqrt{z}\le\frac{z+1}{2}\)
\(\Rightarrow\frac{x^3}{x^2+z}\ge x-\frac{z+1}{4}\)
Tương tự cộng vào ta có:
\(VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\)
Lại có: \(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
\(\Rightarrow x+y+z\ge3\)
\(\ge VT\ge\frac{3}{4}.3-\frac{3}{4}=1,5\)
Dấu = xảy ra khi x=y=z=1
Cạnh hình vuông là \(\sqrt{4}=2\) cm
Theo định lý Pitago với tam giác vuông ta có độ dài đường chéo là
\(\sqrt{2^2+2^2}=2\sqrt{2}\)
Vậy độ dài đường chéo là \(2\sqrt{2}\)
Ta thấy: \(4=2\cdot2\)
\(\rightarrow\)Cạnh hình vuông có độ dài là 2 cm.
( Hình minh họa )
2 2 A B C
Ta thấy: Đường chéo chia đôi hình vuông tạo thành 1 tam giác vuông (như hình vẽ )
\(\rightarrow\)Đường chéo của hình vuông cũng là cạnh huyền của tam giác.
Áp dụng định lí Py-ta-go, xét tam giác ABC vuông tại B, ta có:
\(AC^2=AB^2+BC^2=2^2+2^2\)\(=4+4=8\left(cm\right)\)
\(\Rightarrow\)\(AC=\sqrt{8}\approx3\)
Vậy đường chéo của hình vuông có độ dài \(\approx\)3.
Cho a,b,c > 0 thỏa mãn a+b+c=1. Tìm Min \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}+\frac{1}{9abc}\)
\(A\ge\frac{9}{a+2+b+2+c+2}+\frac{1}{9abc}\)
\(\Rightarrow A\ge\frac{9}{7}+\frac{1}{9abc}\)
Theo BĐT AM-GM ta có: \(1=a+b+c\ge3\sqrt[3]{abc}\)
\(\Rightarrow abc\le\frac{1}{27}\)
\(\Rightarrow\frac{1}{9abc}\ge3\)
Do đó ta có:
\(A\ge\frac{9}{7}+3=\frac{30}{7}\)
A B C M D E
a) \(\frac{MB}{EC}=\frac{DB}{MC}\)
\(\Leftrightarrow MB.MC=EC.DB\)
Mà tg ABC cân tại A => MC = MB
=> \(BM^2=BD.CE\)(đpcm)
b) Xét tg MDE và BDM
\(\widehat{MDE}=\widehat{BDM}\)(gt)
\(\widehat{MDB}=\widehat{EDM}\)(gt)
\(\Rightarrow\Delta MDE~\Delta BDM\)
A B C D E M
a) \(\widehat{MDB}=\widehat{CME}\left(gt\right)\)
\(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)
\(\Rightarrow\Delta DBM;\Delta MCE\left(g.g\right)\Rightarrow\frac{BM}{CE}=\frac{BD}{MC}\)hay \(\frac{BM}{CE}=\frac{BD}{BM}\)(M là trung điểm BC)
\(\Rightarrow BM^2=BD.CE\)
b) \(\widehat{BMD}=\widehat{MEC}\)( \(\Delta DBM\)và \(\Delta MCE\)đồng dạng)
Mà BME là góc ngoài tam giác MEC
=> \(\widehat{BMD}+\widehat{DME}=\widehat{MEC}+\widehat{MCE}=\widehat{BMD}+\widehat{MCE}\)
\(\Rightarrow\widehat{DME}=\widehat{MCE}=\widehat{MBA}\left(1\right)\)
Từ \(\Delta BDM;\Delta MCE\left(g.g\right)\Rightarrow\frac{DM}{ME}=\frac{BM}{CE}\)hay \(\frac{DM}{ME}=\frac{MC}{CE}\left(2\right)\)
Từ (1) và (2) => \(\Delta DME\Delta MCE\left(c.g.c\right)\)
Mà \(\Delta DBM\Delta MCE\left(g.g\right)\Rightarrow\Delta DBM~\Delta DME\)
ab + ac +b2 +bc= (a+b).(a+c)
ta có:
VP = (a+b).(b+c)= (a+b). b + (a+b).c = ab + b2+ ac + bc = VT
Vậy ab + ac + b2 + bc = (a+b).(b+c)
không ý mik ns là câu ở dưới