Một Một xe máy đi qua chiếc cầu dài 1250 m hết 2 phút Tính vận tốc của xe máy với đơn vị đo là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(0\le x\le1\)
Đặt \(\sqrt{x}=a;\sqrt{1-x}=b\left(a;b\ge0\right)\)
Khi đó ta được a2 + b2 = 1 (1)
Lại có phương trình ban đầu trở thành
\(\dfrac{2a^3}{a+b}+ab=1\) (2)
Từ (1) ; (2) ta được \(\dfrac{2a^3}{a+b}+ab=a^2+b^2\)
\(\Leftrightarrow2a^3=\left(a+b\right).\left(a^2-ab+b^2\right)\)
\(\Leftrightarrow a^3=b^3\Leftrightarrow a=b\)
Khi đó \(\sqrt{x}=\sqrt{1-x}\Leftrightarrow x=1-x\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)
Vậy tập nghiệm \(S=\left\{\dfrac{1}{2}\right\}\)
( \(\dfrac{2}{123}\) + \(\dfrac{2023}{2022}\) )( \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) - \(\dfrac{2}{15}\))
=( \(\dfrac{2}{123}\) + \(\dfrac{2023}{2022}\) )( \(\dfrac{5}{15}\) - \(\dfrac{3}{15}\) - \(\dfrac{2}{15}\))
=( \(\dfrac{2}{123}\) + \(\dfrac{2023}{2022}\))( \(\dfrac{5-3-2}{15}\))
=( \(\dfrac{1}{123}\) + \(\dfrac{2023}{2022}\)). \(\dfrac{0}{15}\)
= ( \(\dfrac{1}{123}+\dfrac{2023}{2022}\)).0
= 0
15,75km = 15750m; 1 giờ 45 phút = 105 phút.
Vận tốc của xe ngựa là:
15750 : 105 = 150 (m/phút)
Đáp số: 150m/phút.
Câu trả lời đây tích mình nha!!!
15,75km = 15750m; 1 giờ 45 phút = 105 phút.
Vận tốc của xe ngựa là:
15750 : 105 = 150 (m/phút)
Đáp số: 150m/phút.
Câu trả lời đây tích mình nha!!!
mai milk nộp bài rồi. bn nào làm nhanh milk kết bn hoặc tùy bn ý
ĐK: \(\left\{{}\begin{matrix}x\ne-y\\y\ge\dfrac{3}{2}\end{matrix}\right.\).
\(\left\{{}\begin{matrix}\dfrac{2x-y+3}{x+y}=1\\2x-\sqrt{2y-3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x-y+3}{x+y}-1=0\\2x-\sqrt{2y-3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x-y+3}{x+y}-\dfrac{x+y}{x+y}=0\\2x-\sqrt{2y-3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y+3-x-y=0\\2x-\sqrt{2y-3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2y+3=0\\2x-\sqrt{2y-3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-\left(2y-3\right)=0\\2x-\sqrt{2y-3}=0\end{matrix}\right..\)
Đặt a = x, b = \(\sqrt{2y-3}\).
Hệ phương trình trở thành: \(\left\{{}\begin{matrix}a-b^2=0\\2a-b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b^2\\2b^2-b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b^2\\b\left(2b-1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b^2\\\left[{}\begin{matrix}b=0\\b=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\left\{{}\begin{matrix}\left[{}\begin{matrix}a=0\\a=\dfrac{1}{4}\end{matrix}\right.\\\left[{}\begin{matrix}b=0\\b=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\\\left[{}\begin{matrix}y=\dfrac{3}{2}\\2y-3=\dfrac{1}{4}\end{matrix}\right.\end{matrix}\right.\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\\\left[{}\begin{matrix}y=\dfrac{3}{2}\\2y=\dfrac{13}{4}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\\\left[{}\begin{matrix}y=\dfrac{3}{2}\\y=\dfrac{13}{8}\end{matrix}\right.\end{matrix}\right..\)
Vậy hệ phương trình có nghiệm (x;y) \(\in\) \(\left\{\left(0;\dfrac{3}{2}\right),\left(\dfrac{1}{4};\dfrac{13}{8}\right)\right\}\).
là gì á em
với đơn vị đo là gì vậy ạ