Tìm x,y,z biết 3x=4y=5z-3x-4y và 2x+y=z-38
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, dễ tự làm
b, xét tam giác CAB và tam giác DAB có : AB chung
AC = AD (gt)
góc CAB = góc DAB = 90
=> tam giác CAB = tam giác DAB (2cgv)
=> góc CBA = góc DBA (đn)
xét tam giác AFB và tam giác AEB có : AB chung
góc AFB = góc AEB = 90
=> tam giác AFB = tam giác AEB (ch - gn)
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(5x=2z\Rightarrow\frac{x}{2}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow\left(2k\right)^3+\left(3k\right)^3-2k\cdot3k\cdot5k=40\)
\(\Rightarrow k^3\cdot8+k^3\cdot27-k^3\cdot30=40\)
\(\Rightarrow k^3\left(8+27-30\right)=40\)
\(\Rightarrow k^3=8\)
\(\Rightarrow k=2\)
\(\Rightarrow\hept{\begin{cases}x=2\cdot2=4\\y=2\cdot3=6\\z=2\cdot5=10\end{cases}}\)
Có xy+yz+zx=xyzxy+yz+zx=xyz⇔⇔xy+yz+zxxyz=1xy+yz+zxxyz=1⇔⇔1x+1y+1z=11x+1y+1z=1
x2yy+2x+y2zz+2y+z2xx+2z=11x2+2xy+11y2+2yz+11z2+2zx≥91x2+1y2+1z2+2(1xy+1yz+1zx)x2yy+2x+y2zz+2y+z2xx+2z=11x2+2xy+11y2+2yz+11z2+2zx≥91x2+1y2+1z2+2(1xy+1yz+1zx)
=9(1x+1y+1z)2=912=9=9(1x+1y+1z)2=912=9
Dấu "=" ko xảy ra ⇒⇒x2yy+2x+y2zz+2y+z2xx+2z>9
Nè sai đề phải k PK vuông góc vs chứ ko phải PH là 1
I đâu ra mà c/m hai góc đó là 2 nêu đề /m HPB và KPC thì làm đc
Nếu đề sai thì viết vào dưới bài này mình sẽ giải cho
Chứng minh :
Giả sử \(\triangle ABC\) có AD là đường trung tuyến ứng với BC và \(DA=\frac{1}{2}BC\).
\(\Rightarrow AD=BD=CD\)
\(+AD=BC\Rightarrow\triangle ADC\text{ cân tại D}\)
\(\Rightarrow\widehat{A_1}=\widehat{C}\)
\(+AD=BD\Rightarrow\triangle ABD\text{ cân tại D}\)
\(\Rightarrow\widehat{A_2}=\widehat{B}\)
\(\Rightarrow\widehat{A_1}+\widehat{A_2}=\widehat{B}+\widehat{C}\)
\(\Rightarrow\widehat{A}=\widehat{B}+\widehat{C}\)
Trong \(\triangle ABC\) có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow\widehat{A}=\widehat{B}+\widehat{C}=\frac{180^0}{2}=90^0\)
hay \(\triangle ABC\) vuông tại A (đpcm)
Bạn tự vẽ hình nha
a) xét ∆NAD và ∆NBD có
ND cạnh chung
AD=AB (d là trung điểm của AB )
Góc NDA = góc NDB(=90°)
=>∆NAD=∆NBD(C-G-C)
b) xét ∆MNA và ∆MNB có
MN cạnh chung
Góc MNA = góc MNB (vì ∆NAD=∆NBD )
NA =NB (vì ∆NAD=∆NBD)
=>∆MNA=∆MNB(c-g-c)
c) ta có ∆NAD=∆NBD (cmt)
=>góc AND =góc BND (2 GÓC TƯƠNG ỨNG )
=>ND LÀ TIA PHÂN GIÁC CỦA GÓC ANB
a) Xét tam giác AMB và AMC có:
AM chung
AB=AC (tam giác ABC cân tại A)
\(\widehat{A_1}=\widehat{A_2}\)(AM là phân giác)
=> \(\Delta AMB=\Delta AMC\left(cgc\right)\)(đpcm)
b) Có tam giác ABC cân tại A (gt); AM là trung tuyến tam giác ABC
Vì trong tam giác cân đường trung tuyến trùng với đường cao
=> AM là đường cao tam giác ABC
=> AM _|_ BC (đpcm)
Bài làm
a) Xét tam giác AMB và tam giác AMC có:
^MAB = ^MAC ( Do AM phân giác )
AB = AC ( Do ∆ABC cân )
^B = ^C ( Do ∆ABC cân )
=> ∆AMB = ∆AMC ( g.c.g )
b) Cách 1: Vì ∆AMB = ∆AMC ( cmt )
=> ^AMB = ^AMC
Mà ^AMB + ^AMC = 180° ( hai góc kề bù )
=> ^AMB = ^AMC = 180°/2 = 90°
=. AM vuông góc với BC.
Cách 2: Vì tam giác ABC cân tại A
Mà AM là tia phân giác
=> AM đồng thời là đường cao.
=> AM vuông góc với BC .
c) Vì ∆ABC cân tại A
Mà AM vừa là đường phân giác, vừa là đường cao.
=> AM là đường trung tuyến.
=> BM = MC
Mà BM + MC = BC = 6
=> BM = MC = 6/2 = 3 ( cm )
Xét tam giác AMB vuông tại M có:
Theo định lí Pytago có:
AB² = AM² + BM²
=> AM² = AB² - BM²
Hay AM² = 5² - 3²
=> AM² = 25 - 9
=> AM² = 16
=> AM = 4 ( cm )
d) Xét tam giác ABC có:
AM vuông góc với BC
AH vuông góc với AC
Mà AM cắt AH tại H
=> H là trực tâm.
=> CH vuông góc với AB . ( Đpcm )
+ TH1: Xét ΔABC vuông tại A có các đường cao AD, BA, CA.
BA, CA là hai đường cao xuất phát từ hai góc nhọn B và C của ΔABC.
AB = AC ⇒ ΔABC cân tại A (đpcm).
+ TH2: Xét ΔABC không có góc nào vuông, hai đường cao BD = CE (như hình vẽ minh họa)
Xét hai tam giác vuông EBC và DCB có :
BC (cạnh chung)
CE = BD (giả thiết)
⇒ ∆EBC = ∆DCB (cạnh huyền - cạnh góc vuông)
+ Xét ΔABC ba đường cao BD = CE = AF (như hình vẽ minh họa)
CE = BD ⇒ ΔABC cân tại A (như cmt) ⇒ AB = AC.
CE = AF ⇒ ΔABC cân tại B (như cmt) ⇒ AB = BC:
⇒ AB = AC = BC
⇒ ΔABC đều.