K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2018

Gọi số sản phẩm theo kế hoạch là x (x E N*)=> Số sản phẩm thực tế là : x + 14 (sản phẩm)

Số sản phẩm mỗi ngày làm theo kế hoạch là : x/18

Số sản phẩm làm được thực tế mỗi ngày là : (x+14)/18+4=(x+14)/22

Ta có phương trình : x/18=(x+14)/22+2

Rồi bạn giải phương trình ra và tìm được ẩn x nhé

5 tháng 6 2018

3(1-2x)(5-3x)-6(3x+5)(x-4)=15-9x-30x+18x2-18x2+72x-30x+120

=\(18x^2-18x^2-9x-30x+72x-30x+15+120=3x+135\) 

ta co 5-3X-10X+6X2-2(3X2-7X-20)    MÌNH RÚT GỌN CHO 2 NHÉ

       => 5-13X+6X2-6X2+14X+40

        => X+45

K MINH NHa

5 tháng 6 2018

Đặt \(a+b+c=t\)  ta có \(a+b+c\le3\)

Đặt \(P=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{3}{2}\left(a+b+c\right)\)

\(\Leftrightarrow2P\ge\frac{18}{a+b+c}+3\left(a+b+c\right)=\frac{18}{t}+3t\)

ĐẾn đây nhóm thế nào hả ad

5 tháng 6 2018

Do \(a;b;c>0\) và \(a^2+b^2+c^2=3\)

\(\Rightarrow0< a;b;c< \sqrt{3}\)

Ta cần CM: \(\frac{1}{a}+\frac{3}{2}a\ge\frac{a^2+9}{4}\)

Hay \(\frac{\left(a-1\right)^2\left(4-a\right)}{4a}\ge0\) Dúng do \(0>a< \sqrt{3}\)

Tương tự cộng lại ta được BđT cần cm

5 tháng 6 2018

Ta có:

\(\frac{S_{BDM}}{S_{BDC}}=\frac{BM}{BC}=\frac{1}{3}\left(1\right)\)

Ta lại có

\(\hept{\begin{cases}\frac{S_{AIB}}{S_{BIM}}=\frac{AI}{MI}=\frac{1}{2}\\\frac{S_{ADI}}{S_{MDI}}=\frac{AI}{MI}=\frac{1}{2}\end{cases}}\)

\(\Rightarrow S_{BDM}=S_{BIM}+S_{DIM}=2S_{AIB}+2S_{ADI}=2S_{ABD}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{2S_{ABD}}{S_{BDC}}=\frac{1}{3}\)

\(\Rightarrow\frac{S_{ABD}}{S_{BDC}}=\frac{1}{6}=\frac{AD}{DC}\)

\(\Rightarrow\frac{AD}{AC}=\frac{1}{7}\)

5 tháng 6 2018

A B C H M N I O

a) Áp dụng ĐL đường phân giác trong tam giác, ta có: 

\(\frac{AM}{HM}=\frac{AC}{HC}\)\(\frac{BN}{HN}=\frac{AB}{AH}\).

Dễ thấy \(\Delta\)AHB ~ \(\Delta\)CHA (g.g): \(\frac{AC}{AB}=\frac{HC}{AH}\Rightarrow\frac{AC}{HC}=\frac{AB}{AH}\)

Do đó: \(\frac{AM}{HM}=\frac{BN}{HN}\)=> MN // AB (ĐL Thales đảo) (đpcm).

b) Áp dụng hệ quả ĐL Thales: \(\frac{MO}{MI}=\frac{AO}{AN}\)(Do NI//AM); \(\frac{MO}{MB}=\frac{NO}{AN}\)

\(\Rightarrow\frac{MO}{MI}+\frac{MO}{MB}=\frac{AO+NO}{AN}=\frac{AN}{AN}=1\Leftrightarrow\frac{1}{MI}+\frac{1}{MB}=\frac{1}{MO}\)(đpcm). 

4 tháng 6 2018

Câu 1: Rút gọn

a. (x+y)2  + (x-y)2

=x2+2xy+y2+x2-2xy+y2=2x2+2y2

b. 2.(x-y) . (x+y) + (x+y)2 + (x-y)2

=2.(x2-y2)+2x2+2y2=4x2

c. (x-y+z)2 + (z-y)2 +2.(x-y+z) . (z-y)

=x2+y2+z2-2xy-2yz+2zx+z2-2yz+y2+2.(xz-xy-yz+y2+z2-zy)

=x2+2y2+2z2-2xy+2zx-4yz+2xz-2xy-4yz+2y2+2z2

=x2+4y2+4z2-4xy-8yz+4xz

Câu 2: Chứng minh

(ac+bd)2 + (ad-bc)2=a2c2+2abcd+b2d2+a2d2-2abcd+b2c2= a2c2+b2d2+a2d2+b2c2 =(a2+b2) . (c2+d2

Câu 1: 

a. \(\left(x+y\right)^2+\left(x-y\right)^2\)

\(=x^2+2xy+y^2+x^2-2xy+y^2\)

\(=2\left(x^2+y^2\right)\)

b. \(2\left(x-y\right)\left(x+y\right)+\left(x+y^2\right)+\left(x-y\right)^2\)

\(=\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x+y+x-y\right)^2\)

\(=\left(2x\right)^2\)

\(=4x^2\)

 \(A=100^2-99^2+98^2-97^2+.......+2^2-1^2\)

\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+.......+\left(2^2-1^2\right)\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+.......+\left(2-1\right)\left(2+1\right)\)

\(=1\left(100+99\right)+1\left(98+97\right)+.......+1\left(2+1\right)\)

\(=3+7+.......+195+199\)

Số số hạng là : 

            199 - 3 : 4 + 1 = 50(số)

Tổng A là : 

             (199 + 3) x 50 : 2 = 5050 

\(B=3\left(2^2+1\right)\left(2^4+1\right)......\left(2^{64}+1\right)+1\)

\(=\left(4-1\right)\left(2^2+1\right)\left(2^4+1\right)......\left(2^{64}+1\right)+1\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)......\left(2^{64}+1\right)+1\)

\(=\left(2^4-1\right)\left(2^8+1\right).......\left(2^{64}+1\right)+1\)

\(...........................\)

\(=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)

\(=2^{128}-1+1=2^{128}\)

4 tháng 6 2018

Xét thí nghiệm 1:

\(PTHH:Mg+2HC1->FeCI_2+H_2\)               (1)

Giả sử Fe phản ứng hết -> Chất rắn là \(FeCI_2\)

\(\Rightarrow n_{Fc}=n_{FeCI_2}=n_{h_2}=\frac{3,1}{127}\approx0,024\left(mol\right)\)

Xét thí nghiệm 2:

\(PTHH:Mg+2HCI->MgCI_2+H_2\)(2)

         \(Fe+2HCI->FeCI_2+H_2\)          (3)

Ta thấy :Ngoài a gam Fe như thí nghiệm 1 cộng với b gam Mg mà chỉ giải phóng :

\(n_{H_2}=\frac{0,0448}{22,4}=0,024\left(mol\right)\)

-> Chứng tỏ TH1:Fe dư HCI hết :

Ta có \(n_{HCI}\left(TN1\right)=n_{HCI}\left(TN2\right)=2_{n_{H2}}=2.0,02=0,04\left(mol\right)\)

TH1:

\(n_{Fe\left(pư\right)}=n_{nFeCI_2}=\frac{1}{2}n_{HCI}=\frac{1}{2}.0,04=0,02\left(mol\right)\)

\(\Rightarrow m_{fe\left(dư\right)}=3,1-0,02.127=0,56\left(gam\right)\)

     \(m_{Fe\left(dư\right)}=0,02.56=1,12\left(gam\right)\)

\(\Rightarrow m_{Fe}=a=0,56+1,12=1,68\left(gam\right)\)

TN2:

Áp dụng ĐLBTKL :

\(a+b=3,34+0,02.2-0,04.36,5=1,92\left(g\right)\)

Mà \(a=1,68gam->b=1,92-1,68=0,24\left(g\right)\)

P/s:Thằng lười :v

      

29 tháng 4

ủa sao thí nghiệm 1 lại có mg vậy, vô lý quá

4 tháng 6 2018

Height line = chiều cao giữa các dòng

:))

4 tháng 6 2018

nghĩa toán học cơ bạn