Cho Phương trình X2 _ căn 3 X - căn 5 =0 . Tính căn (2x1) + căn (2x2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có:
\(\hept{\begin{cases}\frac{a^2}{1+b}+\frac{1+b}{4}\ge a\\\frac{b^2}{1+a}+\frac{1+a}{4}\ge b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{a^2}{1+b}\ge\frac{4a-b-1}{4}\\\frac{b^2}{1+a}\ge\frac{4b-a-1}{4}\end{cases}}\)
\(\Rightarrow A=\frac{a^2}{1+b}+\frac{b^2}{1+a}\ge\frac{4a-b-1}{4}+\frac{4b-a-1}{4}\)
\(=\frac{3}{4}\left(a+b\right)-\frac{1}{2}\ge\frac{3}{4}.2\sqrt{ab}-\frac{1}{2}=\frac{3}{2}-\frac{1}{2}=1\)
Dấu = xảy ra khi \(a=b=1\)

A C B O M K 60 1 1 2 1
a) Ta có : \(\widehat{O_1}=2\widehat{C}=120^0\) (góc ở tâm gấp đôi góc nội tiếp cùng chắn cung nhỏ AB) nên độ dài cung nhỏ AB là \(\frac{2R\pi.120}{360}=\frac{2}{3}R\pi\)
b) \(\Delta AMC\)cân tại M (MC = MA) có \(\widehat{C}=60^0\)nên \(\Delta AMC\)đều\(\Rightarrow\widehat{AMC}=60^0\Rightarrow\widehat{M_1}=120^0\)
\(\Delta AOK,\Delta BMK\)có \(\widehat{K_1}=\widehat{K_2}\)(đối đỉnh) ; \(\widehat{O_1}=\widehat{M_1}=120^0\Rightarrow\Delta AOK\infty\Delta BMK\left(g-g\right)\)
\(\Rightarrow\frac{AO}{OK}=\frac{BM}{MK}\Rightarrow MK.AO=OK.MB\)
c) Tứ giác ABMO có \(\widehat{O_1}=\widehat{M_1}\)(2 đỉnh kề nhau A,M nhìn xuống cạnh đối diện dưới AB các góc bằng nhau)
=> Tứ giác ABMO nội tiếp hay B,M,O,A cùng thuộc 1 đường tròn

Hiển nhiên quá nhỉ
\(x_1;x_2\)là hai nghiệm của phương trình suy ra \(\hept{\begin{cases}x_1^2-3x_1+1=0\\x_2^2-3x_2+1=0\end{cases}\Rightarrow}\hept{\begin{cases}x_1^2=3x_1-1\\x_2^2=3x_2-1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x_1^{n+2}=3x_1^{n+1}-x_1^n\\x_2^{n+2}=3x_2^{n+1}-x_2^n\end{cases}}\)
Cộng theo từng vế của hai phương trình trên ta được: \(A_{n+2}=3A_{n+1}-A_n\)(Đpcm)

\(x^4+5x^2-36=0\)
\(\Leftrightarrow x^4-4x^2+9x^2-36=0\)
\(\Leftrightarrow x^2\left(x^2-4\right)+9\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2+9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2+9\right)=0\)
Dễ thấy: \(x^2+9\ge9>0\forall x\) (vô nghiệm)
SUy ra \(x-2=0;x+2=0\Rightarrow x=2;x=-2\)
Đặt t = x2 ( t ≥ 0)
ta có phương trình: t2 + 5t – 36 = 0. Δt = 25 4.1.(-36) = 169
→ t1 = 4 (tmđk); t2 = -9 (loại). Với t = 4 → x2 = 4 → x = 2

\(\Delta=\left(3m-1\right)^2-4\left(2m^2-m\right)=m^2-2m+1=\left(m-1\right)^2\)
Để pt có 2 nghiệm pb <=> delta >0 <=> m khác 1
Theo hệ thức vi ét ta có:
\(\hept{\begin{cases}x_1+x_2=3m-1\\x_1.x_2=2m^2-m\end{cases}}\)
Vì |x1+x2|=2
\(\Rightarrow x_1^2+x_2^2-2x_1.x_2=4\Rightarrow\left(x_1+x_2\right)^2-4x_1.x_2=4\)
\(\Rightarrow\left(3m-1\right)^2-4\left(2m^2-m\right)=4\Rightarrow\left(m-1\right)^2=4\Rightarrow\orbr{\begin{cases}m=3\\m=-1\left(L\right)\end{cases}}\)
Vậy m=3 thì thỏa mãn
Theo vi-ét ta được: \(\hept{\begin{cases}x_1+x_2=\frac{3m-1}{1}=3m-1\\x_1x_2=\frac{2m^2-m}{1}=2m^2-m\end{cases}}\)(1)
Theo đề: \(\left|x_1-x_2\right|=2\Leftrightarrow\left(x_1-x_2\right)^2=4\Leftrightarrow x_1^2+x_2^2-2x_1x_2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)(2)
Thay (1) vào (2) ta được pt:
\(\left(3m-1\right)^2-4.\left(2m^2-m\right)=4\)
\(\Rightarrow9m^2-6m+1-8m^2+4m-4=0\)
\(\Rightarrow m^2-2m-3=0\)
\(\Rightarrow\left(m-3\right)\left(m+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}m=3\\m=-1\end{cases}}\)
Với m = 3 suy ra hệ \(\hept{\begin{cases}x_1+x_2=8\\x_1x_2=15\end{cases}}\). Giải hệ ta được \(\hept{\begin{cases}x_1=5\\x_2=3\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=3\\x_2=5\end{cases}}\)
Với m = -1 suy ra hệ \(\hept{\begin{cases}x_1+x_2=-4\\x_1x_2=3\end{cases}}\). Giải hệ ta được \(\hept{\begin{cases}x_1=-1\\x_2=-3\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=-3\\x_2=-1\end{cases}}\)
Vậy (x1;x2) = (5;3) , (3;5) , (-1;-3) , (-3;-1)

\(cos2\left(x+\frac{\pi}{6}\right)+4cos\left(\frac{\pi}{3}-x\right)=\frac{5}{2}\)
\(4sin\left(x+\frac{\pi}{6}\right)+\left(x+\frac{\pi}{6}\right)cos2=\frac{5}{2}\)
\(\frac{1}{6}\left(24sin\right)\left(x+\frac{\pi}{6}\right)+6x\left(cos2\right)=\frac{5}{2}\)
\(2\sqrt{3}sin\left(x\right)+x\)\(cos\left(2\right)+2cos\left(x\right)+\frac{1}{6}\pi\)\(cos\left(2\right)=\frac{5}{2}\)
\(\left(2\sqrt[6]{-1}-2\left(-1^{\frac{5}{6}}\right)\right)sin\left(x\right)+x\left(cos2\right)+\left(2\sqrt[3]{-1-2\left(-1^{\frac{2}{3}}\right)}\right)cos\left(x\right)=\frac{5}{2}-\frac{1}{6}\pi\)\(cos\left(2\right)\)
\(24sin\left(x+\frac{\pi}{6}\right)+\left(6x+\pi\right)cos\left(2\right)=15\)
\(4sin\left(x+\frac{\pi}{6}\right)+x\)\(cos\left(2\right)+\frac{1}{6}\pi\)\(cos\left(2\right)=\frac{5}{2}\)
\(\Rightarrow x=\left\{-15,1252;-13,976;-6,8388;-3,93832\right\}\)

Để PT có 2 nghiệm phân biệt:
\(\Delta'=m^2-2\left(m^2-2\right)>0\)
\(< =>4>m^2< =>-2< m< 2\left(1\right)\)
Theo Vi-ét
\(x_1+x_2=-m,x_1x_2=\frac{m^2-2}{2}\)
\(=>A=2x_1x_2+x_1+x_2-4=m^2-2-m-4=m^2-m-6< =4-\left(-2\right)-6=0\)
\(=>\)Max \(A=0\)
Dấu "=" xảy ra khi m=-2

Mình xin làm lại
Giải
Thời gian của hai công nhân đó là
3 + 2 \(=\)5 giờ
Tỉ số phần trăm công việc của hai công nhân là
40 \(\div\) 100 \(=\) 0,4 công việc
Nếu làm một mình thì mỗi người cần số thời gian là
5 \(\div\) 0,4 \(=\) 12,5 giờ
Đổi \(=\)
Lưu ý đổi bạn tự là
Mình sợ sai lắm . Mình sắp lên lớp 6
Chúc bạn Thu Hằng học giỏi
Nếu làm 1 mình để xong công việc thì mỗi người cần số thờ gian là
\(2+3=5\)giờ
Đáp số 5 giờ
Không biết có đúng không mình mới sắp lên lớp 6

\(A=\frac{\sqrt{3-\sqrt{7}}-\sqrt{3+\sqrt{7}}}{\sqrt{3-\sqrt{2}}}\)
\(\Rightarrow A^2=\frac{3-\sqrt{7}+3+\sqrt{7}-2\sqrt{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}}{3-\sqrt{2}}\)
\(=\frac{6-2\sqrt{3^2-7}}{3-\sqrt{2}}\)\(=\frac{6-2\sqrt{2}}{3-\sqrt{2}}=\frac{2\left(3-\sqrt{2}\right)}{3-\sqrt{2}}=2\)
Hay \(A^2=2\Rightarrow\orbr{\begin{cases}A=\sqrt{2}\\A=-\sqrt{2}\end{cases}}\)
\(x^2-\sqrt{3}x-\sqrt{5}=0\)
Tính dental dc chứ - tự lm nha
\(\sqrt{2x_1}+\sqrt{2x_1}\)
\(\Leftrightarrow2x_1+2x_2+2\sqrt{4x_1x_2}\)
Tự lm lun nhoa đến 90 % rồi