K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2018

5B=-25x2 -20x+5 = 9 - (25x2 +20x +4) = 9- (5x+2)2 \(\le9\)

=> B\(\le\frac{9}{5}\)<=> x=-2/5

12 tháng 6 2018

Tìm GTLN của: \(B=-5x^2-4x+1\)

Ta có 

\(B=-5x^2-4x+1\)

\(B=-5\left(x^2+\frac{4}{5}x-\frac{1}{5}\right)\)

\(B=-5\left[x^2+2x.\frac{2}{5}+\left(\frac{2}{5}\right)^2-\frac{4}{25}-\frac{5}{25}\right]\)

\(B=-5\left[\left(x+\frac{2}{5}\right)^2-\frac{9}{25}\right]\)

\(B=-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\)

Mà \(-5\left(x+\frac{2}{5}\right)^2\le0\). Dấu "=" xảy ra khi và chỉ khi \(x=\frac{-2}{5}\)

=> \(-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\le\frac{9}{5}\). Dấu "=" xảy ra khi và chỉ khi \(x=\frac{-2}{5}\)

Vậy B có GTLN bằng \(\frac{9}{5}\)khi \(x=\frac{-2}{5}\).

Tìm GTLN của: \(C=-2x^2+10x+3\)

Ta có

\(C=-2x^2+10x+3\)

\(C=-2\left(x^2-5x-\frac{3}{2}\right)\)

\(C=-2\left[x^2-2x.\frac{5}{2}+\left(\frac{5}{2}\right)^2-\frac{25}{4}-\frac{9}{4}\right]\)

\(C=-2\left[\left(x-\frac{5}{2}\right)^2-\frac{17}{2}\right]\)

\(C=-2\left(x-\frac{5}{2}\right)^2+17\)

Mà \(-2\left(x-\frac{5}{2}\right)^2\le0\). Dấu "=" xảy ra khi và chỉ khi \(x=\frac{5}{2}\)

=> \(-2\left(x-\frac{5}{2}\right)^2+17\le17\). Dấu "=" xảy ra khi và chỉ khi \(x=\frac{5}{2}\)

Vậy C có GTLN bằng 17 khi \(x=\frac{5}{2}\)

12 tháng 6 2018

Bạn cứ phân tích hết ra nhé

12 tháng 6 2018

Không bt mk ms hỏi chứ  nếu phân tích đc mk đã phân tích gòi

12 tháng 6 2018

1, \(n^5+19n=n^5-n+20n=n\left(n^4-1\right)+20n\)

\(=n\left(n^2-1\right)\left(n^2+1\right)+20n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)+20n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n\left(n-1\right)\left(n+2\right)+20n\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)+20n\)

Vì (n-2)(n-1)n(n+1)(n+2) là hs 5 số tự nhiên liên tiếp nên \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\)

Mà \(5n\left(n-1\right)\left(n+1\right)⋮5;20n⋮5\)

\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)+20n⋮5\) hay \(n^5+19n⋮5\)

2/ \(a^3-a+24=a\left(a^2-1\right)+24=\left(a-1\right)a\left(a+1\right)+24\)

Vì (a-1)a(a+1) là tích 3 số liên tiếp nên (a-1)a(a+1) chia hết cho 2 và 3 => (a-1)a(a+1) chia hết cho 6 

Mà 24 chia hết cho 6

=> (a-1)a(a+1)+24 chia hết cho 6 hay a^3-a+24 chia hết cho

3/  giống bài 2 

4/ Vì a^3-a chia hết cho 6 (cm b2), 12(a^2+1) chia hết cho 6 => a^3-a+12(a^2+1) chia hết cho 6

12 tháng 6 2018

a) x^4+4=x^4+4x^2+4-4x^2

=(x^2+2)^2-4x^2

=(x^2+2)^2-(2x)^2

=(x^2-2x+2)(x ^2+2x+2).

12 tháng 6 2018

a, \(x^4+4=x^4+4+4x^2-4x^2\)

                    \(=\left(x^4+4x^2+4\right)-4x^2\)

                     \(=\left(x^2+2\right)^2-\left(2x\right)^2\)

                       \(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)

b, \(4x^4+1=4x^4+1+4x^2-4x^2\) 

                      \(=\left(4x^4+4x^2+1\right)-4x^2\)

                       \(=\left(2x^2+1\right)^2-\left(2x\right)^2\) 

                        \(=\left(2x^2+1-2x\right)\left(2x^2+1+2x\right)\)

12 tháng 6 2018

Ta có: \(\frac{30-2\sqrt{45}}{4}=\frac{30}{4}-\frac{2\sqrt{45}}{4}=7,5-\frac{2\sqrt{45}}{4}\le7,5\)

\(\Rightarrow\frac{30-2\sqrt{45}}{4}< 17\)

Chúc bn hc tốt!

12 tháng 6 2018

Ta có: \(30-2\sqrt{45}\)\(30\)\(68\)

\(\Rightarrow\frac{30-2\sqrt{45}}{4}\)\(\frac{68}{4}=17\)

12 tháng 6 2018

Đặt \(4x^2-3x=a\)

\(\Rightarrow\left(4x^2-3x\right).\left(4+3x-4x^2\right)-6=a.\left(4-a\right)-6=4a-a^2-6=-\left(a^2-4a+6\right)=-\left[\left(a-2\right)^2+2\right]< 0\)

12 tháng 6 2018

Gọi \(\overline{ab}\)là số tự nhiên cần tìm (0 < a < 9; 0 < b < 9)

Ta có: \(\overline{a9b}-\overline{ab}=810\)

<=> \(\left(100a+90+b\right)-\left(10a+b\right)=810\)

<=> \(100a+90+b-10a-b=810\)

<=> \(90a+90=810\)

<=> \(90\left(a+1\right)=810\)

<=> \(a+1=9\)

<=> \(a=8\)

và \(a=2b\)

=> \(b=\frac{a}{2}=\frac{8}{2}=4\)

Vậy số ban đầu là số 84.