K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2019

 câu a. từ tg(tam giác)ABC cân => AB=AC

cóAB=AC

hay AE+BE=AD+CD

mà AD=AE ( gt )

=> BE=CD

câu b. Xét tg BMD và tg CME

có BE=CD (cmt)

góc EBC = góc DCB (hai góc đáy của tg ABC)

và BC chung

=> tg BMD = tg CME (c.g.c)

câu c. 

26 tháng 2 2019

=2

=4

=8

=2

câu cuối ko bt

26 tháng 2 2019

1+1=2

2+2=4

4+4=8

tứ chia tam=tám chia tư =2

nhị tứ=24

27 tháng 2 2019

Tất cả sai hết! (kể cả boul,nếu thay x=-2 vào sẽ thấy vô lí).Không có đk xác định với đk bình phương sao làm được:

                                                    Lời giải

ĐKXĐ: \(7-x\ge0\Leftrightarrow x\le7\) (1)

Do \(VT\ge0\Rightarrow x-1\ge0\Leftrightarrow x\ge1\) (2)

Từ (1) và (2) suy ra \(1\le x\le7\)

Bình phương hai vế,ta có: \(\left(x-1\right)^2=7-x\Leftrightarrow x^2-2x+1=7-x\)

\(\Leftrightarrow x^2-x-6=0\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\left(L\right)\end{cases}}\)

Vậy \(x=3\)

 7 -x = x2-1

x2+ x - 8 = 0

x2+ 2x + 1 -9 =0

(x+ 1)2= 9

\(\orbr{\begin{cases}x+1=3\\x+1=-3\end{cases}}\)

26 tháng 2 2019

Ta có : 

\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\) vì \(x^2+y^2=1\)

\(\Rightarrow\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)

\(\Leftrightarrow\frac{x^4.b+y^4.a}{ab}=\frac{\left(x^2+y^2\right)^2}{ab}\)

\(\Leftrightarrow\left(x^4.b+y^4.a\right)\left(a+b\right)=ab\left(x^2+y^2\right)^2\)

\(\Rightarrow x^4ab+x^4b^2+a^2y^4+aby^4\)

\(=ab\left(x^2+y^2\right)\left(x^2+y^2\right)\)

\(\Rightarrow ab\left(x^4+x^2y^2+x^2y^2+y^4\right)\)

\(\Rightarrow abx^4+abx^2y^2+abx^2y^2+abx^2y^2+aby^4\)

\(\Rightarrow b^2x^4+a^2y^4\)

\(=2abx^2y^2\)

\(\Rightarrow\left(bx^2\right)^2+\left(ay^2\right)^2-ax^2.by^2-ax^2-by^2=0\)

\(\Rightarrow\left[\left(bx^2\right)^2-ax^2.by^2\right]+\left[\left(ay^2\right)^2-ax^2.by^2\right]=0\)

\(bx^2\left(bx^2-ay^2\right)+ay^2\left(ay^2-bx^2\right)=0\)

\(bx^2\left(bx^2-ay^2\right)-ay^2\left(bx^2-ay^2\right)\)

\(\left(bx^2-ay^2\right)^2=0\)

\(bx^2-ay^2=0\)

\(bx^2=ay^2\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}\)

Mà \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\Rightarrow x^2.\frac{x^2}{a}+y.\frac{y^2}{b}=\frac{x^2+y^2}{a+b}\)

\(\Rightarrow\frac{x^2}{a}\left(x^2+y^2\right)=\frac{x^2+y^2}{a+b}\)

\(\Rightarrow\frac{x^2}{a}=\frac{1}{a+b}\Rightarrow\frac{y^2}{b}=\frac{x^2}{a}=\frac{1}{a+b}\)

Ta có :

\(\frac{x^{2004}}{a^{1002}}+\frac{y^{2004}}{a^{1002}}=\left(\frac{x^2}{a}\right)^{1002}+\left(\frac{y^2}{b}\right)^{1002}=\frac{1}{\left(a+b\right)^{1002}}+\frac{1}{\left(a+b\right)^{1002}}=\frac{2}{\left(a+b\right)^{1002}}< đpcm>\)

Hok tốt 

P/s : _Làm bừa nên chắc k đúng đâu - - _M bt a hok ngu thek nào r mak (:

26 tháng 2 2019

_E cóa thý a hok ngu âu >: ?

_Với cả giải vợi lak đầy đủ roy hả ?

_Thank nhìu nhìu <<<: