K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

Tìm nghiệm nguyên dương của phương trình: x^2+(x+y)^2=(x+9)^2 - Đại số - Diễn đàn Toán học

31 tháng 5 2017

ta có: \(\frac{\sqrt{2x^2+y^2}}{xy}=\sqrt{\frac{2}{y^2}+\frac{1}{x^2}}\)

Áp dụng BĐT bunyakovsky:\(\left(2+1\right)\left(\frac{2}{y^2}+\frac{1}{x^2}\right)\ge\left(\frac{2}{y}+\frac{1}{x}\right)^2\)

\(\Rightarrow\frac{2}{y^2}+\frac{1}{x^2}\ge\frac{1}{3}\left(\frac{2}{y}+\frac{1}{x}\right)^2\).....bla bla

30 tháng 5 2017

Nghiệm của phương trình là x = y = 1.

31 tháng 5 2017

\(PT\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x+1-y^3\right)=0\)

đến đây bạn thử xài phương pháp kẹp ..bla bla

30 tháng 5 2017

đặt x2 + y2 = a; xy = b. khi đó a - b = 1 hay a = b + 1.

ta phải chứng minh x4 + y4 - x2y2 \(\ge\)\(\frac{1}{9}\)hay a2 - 3b2 \(\ge\)\(\frac{1}{9}\)  (1)

thế a = b + 1 vào (1) ta được 9b2 - 9b - 4 \(\le\)0 hay (3b + 1)(3b - 4) \(\le\)0 hay \(\frac{-1}{3}\le b\le\frac{4}{3}\)

ta sẽ chứng minh \(\frac{-1}{3}\le b\le\frac{4}{3}\).

thật vậy

ta có x2 + y2\(\ge\)2xy nên từ giả thiết suy ra xy \(\le\) 1 hay b \(\le\)1 nên b \(\le\)\(\frac{4}{3}\)

mặt khác từ giả thiết ta có (x + y)2 - 3xy = 1 nên 3xy + 1  = (x + y)2\(\ge\)0 hay xy \(\ge\)\(\frac{-1}{3}\)hay b  \(\ge\)\(\frac{-1}{3}\)

từ đó suy ra đpcm.

30 tháng 5 2017

Ta có: \(\frac{P}{4}=\frac{2x^2-xy-y^2}{x^2+2xy+3y^2}\)

Xét x=0 =>...

Xét x#0 chia cả tử và mẫu cho x2 rồi đặt \(t=\frac{y}{x}\)

Delta=....

28 tháng 9 2017

bn giải lại đc ko ạ

30 tháng 5 2017

A B C E D H M K H

a) Xét tứ giác ADHE có: 

       \(\widehat{AEH}+\widehat{ADH}=90^o+90^o=180^o\)

=> tứ giác ADHE nội tiếp đường tròn đường kính AH.

b) hơi khó, mình chịu thôi, nhưng chỉ cần CM góc HED = góc EAM là mình sẽ làm được.

30 tháng 5 2017

b)Áp dụng BĐT AM-GM ta có: 

\(\frac{a^3}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\ge a-\frac{ab^2}{2ab}=a-\frac{b}{2}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{b^3}{b^2+c^2}\ge b-\frac{c}{2};\frac{c^3}{c^2+a^2}\ge c-\frac{a}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge a+b+c-\frac{a+b+c}{2}=\frac{a+b+c}{2}=VP\)

Đẳng thức xảy ra khi \(a=b=c\)

30 tháng 5 2017

Câu b

xét \(\frac{a^3}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\ge a-\frac{ab^2}{2ab}=a-\frac{b}{2}\)

chứng minh tương tự và cộng 3 bất đẳng thức ta có:

\(\frac{a^3}{a^2+b^2}+\frac{b^3}{c^2+b^2}+\frac{c^3}{c^2+a^2}\ge a+b+c-\frac{a}{2}-\frac{b}{2}-\frac{c}{2}=\frac{a+b+c}{2}\)

Câu a:

để a là số chính phương thì \(4x^2+8x+21=k^2\left(k\in N\right)\)\(\Leftrightarrow\left(2x+1\right)^2+20=k^2\Leftrightarrow\left(k+2x+1\right)\left(k-2x-1\right)=20\)

do đó \(k+2x+1\)và \(k-2x-1\)là ước của 20 nên ta có :

  • \(\hept{\begin{cases}k+2x+1=20\\k-2x-1=1\end{cases}\Leftrightarrow2k=21\left(L\right)}\)
  • \(\hept{\begin{cases}k+2x+1=10\\k-2x-1=2\end{cases}\Leftrightarrow2k=12\Leftrightarrow k=6\Rightarrow x=\frac{3}{2}}\)
  • \(\hept{\begin{cases}k+2x+1=5\\k-2x-1=4\end{cases}\Leftrightarrow2k=9\left(L\right)}\)

Cho a,b,c là những số dương abc=1. Tìm GTLN của P\(=\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\)

31 tháng 5 2017

\(\frac{1}{a^2+2b^2+3}=\frac{1}{\left(a^2+b^2\right)+b^2+1+2}\le\frac{1}{2}\left(\frac{1}{ab+b+1}\right)\) 

tương tự với những cái còn lại, ta sẽ đc 1 bài quen thuộc