Cho đường tròn (O), hai dây AB và CD cắt nhau ở M nằm bên ngoài đường tròn. Gọi H và K lần lượt là trung điểm của AB và CD. So sánh MH và MK, biết AB < CD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Kẻ \(OM\perp AB\), \(OM\)cắt \(CD\)tại \(N\).
Khi đó \(MN=8cm\).
TH1: \(AB,CD\)nằm cùng phía đối với \(O\).
\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (1)
\(R^2=OA^2=OM^2+AM^2=\left(h+8\right)^2+\left(\frac{15}{2}\right)^2\)(2)
Từ (1) và (2) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{9}{4}\).
TH2: \(AB,CD\)nằm khác phía với \(O\).
\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (3)
\(R^2=OA^2=OM^2+AM^2=\left(8-h\right)^2+\left(\frac{15}{2}\right)^2\)(4)
Từ (3) và (4) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{-9}{4}\)(loại).
Bài 3:
Lấy \(A'\)đối xứng với \(A\)qua \(Ox\), khi đó \(A'\)có tọa độ là \(\left(1,-2\right)\).
\(MA+MB=MA'+MB\ge A'B\)
Dấu \(=\)xảy ra khi \(M\)là giao điểm của \(A'B\)với trục \(Ox\).
Suy ra \(M\left(\frac{5}{3},0\right)\).
a) Tam giác ABC nội tiếp đường tròn (O) đường kính BC
=> OA=OB=OC và O là trung điểm của BC
=> Tam giác ABC vuông tại A
=> góc BAC = 90 độ
b) DO tam giác HAK nội tiếp đường tròn (I)
Lại có góc HAK = 90 độ
=> HK là đường kính của (I)
=> HK đi qua I
=> H,I,K thẳng hàng
c) Đề bài ghi ko rõ
d) 3 điểm nào?
\(A=\left(13-\sqrt{15}+13+\sqrt{15}\right):\sqrt{5}\)
\(=\left(\left(13+13\right)+\left(-\sqrt{15}+\sqrt{15}\right)\right):\sqrt{5}\)
\(=\frac{26}{\sqrt{5}}\)
\(=\frac{26\sqrt{5}}{5}\)
\(B=\sqrt{48}+\sqrt{513}+2\sqrt{75}-5\sqrt{113}\)
\(=4\sqrt{3}+3\sqrt{57}+10\sqrt{3}-5\sqrt{113}\)
\(=14\sqrt{13}+3\sqrt{57}-5\sqrt{113}\)
a/ Áp dụng BĐT Cô-si cho các số dương ta được
abc+bca≥2√abc.bca=2cabc+bca≥2abc.bca=2c
Tương tự
abc+cab≥2babc+cab≥2b
bca+cab≥2abca+cab≥2a
Cộng các vế của BĐT
2(abc+bca+cab)≥2(1a+1b+1c)2(abc+bca+cab)≥2(1a+1b+1c)
↔abc+bca+cab≥1a+1b+1c↔abc+bca+cab≥1a+1b+1c
b/ Áp dụng BĐT Cô-si cho các số dương ta được
abc+bca≥2√abc.bca=2babc+bca≥2abc.bca=2b
Tương tự
abc+cab≥2aabc+cab≥2a
bca+cab≥2cbca+cab≥2c
Cộng các vế của BĐT
2(abc+bca+cab)≥2(a+b+c)2(abc+bca+cab)≥2(a+b+c)
↔abc+bca+cab≥a+b+c
Độ dài đoạn thẳng AB là: \(AB=\sqrt{\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2}=\sqrt{\left[-1-\left(-4\right)\right]^2+\left(6-4\right)^2}=\sqrt{9+4}=\sqrt{13}\)
Mà CD = AB (vì tứ giác ABCD là hình bình hành) \(\Rightarrow CD=\sqrt{13}\)
Tương tự, ta cũng tính được độ dài đoạn AD là \(\sqrt{34}\)
Như vậy, ta có \(\hept{\begin{cases}CD=\sqrt{13}=\sqrt{\left(x_C-x_D\right)^2+\left(y_C-y_D\right)^2}\\AD=\sqrt{34}=\sqrt{\left(x_A-x_D\right)^2+\left(y_A-y_D\right)^2}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\sqrt{\left(1-x_D\right)^2+\left(1-y_D\right)^2}=\sqrt{13}\\\sqrt{\left(-1-x_D\right)^2+\left(6-y_D\right)^2}=\sqrt{34}\end{cases}}\)
Tới đây bạn tự giải nhé.
\(P=\frac{\sqrt{x}-5}{\sqrt{x}}=1-\frac{5}{\sqrt{x}}\)
Để P nhỏ nhất thì \(\frac{5}{\sqrt{x}}\)phải lớn nhất, mà \(\frac{5}{\sqrt{x}}\)lớn nhất khi \(\sqrt{x}\)nhỏ nhất, tuy nhiên \(x>0\)nên tớ chịu không tìm được GTNN của P.