cho tam giác ABC cân tại A kẻ AI vuông góc với BC tại I, trên cạnh AB lấy điểm M , trên cạnh AC lấy điểm N sao cho AM=AN
a, chứng minh IB=IC
b, tam giác IMN cân tại I
c, C/M MN song song với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi nghiệm nguyên của P(x) là: k
ta có: ak3+bk2+ck+d=0ak3+bk2+ck+d=0
k.(ak2+bk+k)=−dk.(ak2+bk+k)=−d( *)
ta có: P(1)=a+b+c+dP(1)=a+b+c+d
P(0)=dP(0)=d
mà P(1); P(0) là các số lẻ
=> a+b+c+d và d là các số lẻ
mà d là số lẻ
=> a+b+c là số chẵn
Từ (*) => k thuộc Ư(d)
mà d là số lẻ
=> k là số lẻ
=> k3−1;k2−1;k−1k3−1;k2−1;k−1là các số chẵn
⇒a(k3−1)+b(k2−1)+c(k−1)⇒a(k3−1)+b(k2−1)+c(k−1) là số chẵn
=(ak3+bk2+ck)−(a+b+c)=(ak3+bk2+ck)−(a+b+c)
mà a+b+c là số chẵn
⇒ak3+bk2+c⇒ak3+bk2+c là số chẵn
Từ (*) => d là số chẵn ( vì d là số lẻ)
=> P(x) không thể có nghiệm nguyên
Để B có giá trị lớn nhất thì \(\left(x-11\right)^2+29\) nhỏ nhất
Mà \(\left(x-11\right)^2\ge0\Rightarrow\left(x-11\right)^2+29\ge29\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-11\right)^2=0\Leftrightarrow x=11\)
Vậy \(B_{MAX}=\frac{10}{29}\Leftrightarrow x=11\)
Đáp án đây nha
https://hoidapvietjack.com/q/648113/cho-abc-vuong-can-tai-a-goi-m-la-trung-diem-bc-d-la-diem-thuoc-doan-bm-d-khac-b-
tu ke hinh :
AC _|_ FH (GT)
FM _|_ FH (GT)
=> FM // AC (dl)
goc ACB so le trong FMB
=> goc ACB = goc FMB (dl)
tam giac ABC can tai A => goc ACB = goc ABC (dl)
=> goc FMB = goc ABC
xet tam giac DBM va tam giac FMB co : BM chung
goc BDM = goc BFM = 90 do ...
=> tam giac DBM = tam giac FMB (ch - gn)
b, tam giac DBM = tam giac FMB (cau a)
=> MD = FB (dn)
ke MH
FM // AC (Cau a) => goc FMH = goc MHE (slt) (1)
ME _|_ AC (GT)
FH _|_ AC (gt)
=> FH // ME (dl)
=> goc FHM = goc HME (slt) (2)
xet tam giac FHM = tam giac EMH co : HM chung ; (1)(2)
=> tam giac FHM = tam giac EMH (g - c - g)
=> ME = FH
MD = FB
=> ME + MD = FB + FH
=> ME + MD = HB
vay khi M chay tren BC thi MD + ME khong doi
c, ke DO // AC; O thuoc BC
roi tu chung minh qua 2 phan
Theo đề: \(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=\frac{2019}{90}\)
Khai triển:
\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(=\frac{a}{a+b}+\frac{a}{b+c}+\frac{a}{c+a}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{c}{b+c}+\frac{c}{a+c}\)
\(=\frac{a+b}{a+b}+\frac{a+c}{a+c}+\frac{b+c}{b+c}+\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+3=\frac{2019}{90}\)
Làm nốt nhé :3
giúp mik ik ạk