Nghiệm của biểu thức: -8\(x^2\) + 8x + 8 là?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(x^2\) = -1
Ta có: \(x^2\) ≥ 0 ∀ \(x\) nên \(x^2\) > -1 ∀ \(x\)
Vậy không có giá trị nào của \(x\) thỏa mãn đề bài
Kết luận \(x\in\) \(\varnothing\)

- 1 = \(x^2\)
Vì \(x^2\) ≥ 0 ∀ \(x\)
⇒ \(x^2\) > -1 ∀ \(x\)
Vậy không có giá trị nào của \(x\) thỏa mãn đề bài
Kết luận: \(x\in\) \(\varnothing\)

a: Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
mà \(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{3}=\dfrac{\widehat{C}}{5}\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{3}=\dfrac{\widehat{C}}{5}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{1+3+5}=\dfrac{180^0}{9}=20^0\)
=>\(\widehat{A}=20^0;\widehat{B}=60^0;\widehat{C}=100^0\)
b: BD là phân giác góc ngoài tại B
=>\(\widehat{CBD}=\dfrac{180^0-60^0}{2}=\dfrac{120^0}{2}=60^0\)
\(\widehat{BCD}+\widehat{BCA}=180^0\)
=>\(\widehat{BCD}+100^0=180^0\)
=>\(\widehat{BCD}=80^0\)
Xét ΔCBD có \(\widehat{CBD}+\widehat{BCD}+\widehat{BDC}=180^0\)
=>\(\widehat{ADB}+80^0+60^0=180^0\)
=>\(\widehat{ADB}=40^0\)

Ta có : tam giác ABC cân tại A có AM là tia phân giác
=> AM vừa là phân giác vừa là đường cao
=> AM vuông góc vs BC
=> C,M,B thẳng hàng

\(\left(\dfrac{-5}{9}\right)^{10}:x=\left(\dfrac{-5}{9}\right)^8\\ =>x=\left(\dfrac{-5}{9}\right)^{10}:\left(\dfrac{-5}{9}\right)^8\\ =>x=\left(-\dfrac{5}{9}\right)^{10-8}\\ =>x=\left(-\dfrac{5}{9}\right)^2\\ =>x=\dfrac{\left(-5\right)^2}{9^2}\\ =>x=\dfrac{25}{81}\)
\(\left(-\dfrac{5}{9}\right)^{10}:x=\left(-\dfrac{5}{9}\right)^8\\ \Rightarrow x=\left(-\dfrac{5}{9}\right)^{10-8}\\ \Rightarrow x=\left(-\dfrac{5}{9}\right)^2\\ \Rightarrow x=\dfrac{25}{81}\)
Vậy: \(x=\dfrac{25}{81}\)

\(\left|4-x\right|+2x=0\)
`TH1:x<=4`
`(4-x)+2x=0`
`=>4-x+2x=0`
`=>x+4=0`
`=>x=-4(tm)`
`TH2:x>4`
`-(4-x)+2x=0`
`=>-4+x+2x=0`
`=>3x-4=0`
`=>3x=4`
`=>x=4/3` (ktm)
Vậy: ...

xy-x=3y+10
=>x(y-1)-3y=10
=>x(y-1)-3y+3=13
=>(x-3)(y-1)=13
=>\(\left(x-3;y-1\right)\in\left\{\left(1;13\right);\left(13;1\right);\left(-1;-13\right);\left(-13;-1\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(4;14\right);\left(16;2\right);\left(2;-12\right);\left(-10;0\right)\right\}\)

\(C=\dfrac{5}{2\cdot7}+\dfrac{16}{7\cdot9}-\dfrac{2}{9\cdot11}-\dfrac{29}{1\cdot11}\)
\(=\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{11}-\dfrac{29}{11}\)
\(=\dfrac{1}{2}-\dfrac{28}{11}=\dfrac{11-56}{22}=\dfrac{-45}{22}< \dfrac{1}{3}\)
Cho đa thức: \(-8x^2+8x+8=0\)
\(\Rightarrow-8\left(x^2-x-1\right)=0\\ \Rightarrow x^2-x-1=0\\ \Rightarrow\left(x^2-x-\dfrac{1}{4}\right)-\dfrac{3}{4}=0\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{3}{4}\\ \Rightarrow x-\dfrac{1}{2}=\pm\dfrac{\sqrt{3}}{2}\\ \Rightarrow x=\dfrac{1\pm\sqrt{3}}{2}\)