Rút gọn biểu thức
a) A= 39(x-y)^2-2(x+y)^2-(x-y)(x+y)
b) B= (x-1)^2-2(x-1)(x-3)+(x-3)^2
c) C= (2x+3)^2+(2x+3)(2x-6)+(x-3)^2
d) D= (x^2+x+1)(x^2-x+1)(x^4-x^2+1)(x^8-x^4+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\left(\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right).\left(x+1\right)}-\frac{x+3}{2\left(x+2\right)}\right).\frac{4x^2-4}{5}\)
A = \(\left(\frac{\left(x+1\right)^2+3.2-\left(x+3\right).\left(x-1\right)}{2\left(x-1\right).\left(x+1\right)}\right).\frac{4x^2-4}{5}\)
A = \(\left(\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right).\left(x+1\right)}\right).\frac{4\left(x^2-1\right)}{5}\)
A = \(\frac{10}{2\left(x-1\right).\left(x+1\right)}.\frac{4\left(x-1\right).\left(x+1\right)}{5}\)
A = 4
A= x4 - 2223x3 + 2223x2 - 2223x + 2223
= x4 - 2222x3 - x3 + 2222x2 + x2 - 2222x - x +2222 + 1
x = 2222
\(\Rightarrow\)A = x4 - x4 - x3 + x3 + x2 - x2 - x + x + 1
= 1
Vậy A = 1.
\(-3x\left(x+2\right)^2+\left(x+3\right)+\left(x-1\right)\left(x+1\right)-\left(2x-3\right)^2\)
\(=-3x\left(x^2+4x+4\right)+\left(x+3\right)+\left(x^2-1\right)-\left(4x^2-12x+9\right)\)
\(=-3x^3-12x^2-12x+x+3+x^2-1-4x^2+12x-9\)
\(=-3x^3-15x^2+x-7\)
đề sai rồi bn!
\(a,b,c\ge0\Rightarrow a+b+c\ge0\)chứ sao lại \(a+b+c\le0\)
P/S: Sửa lại đề đi nha
\(B=10-5x\left(x-1,2\right)+2x\left(2,5x-3\right)\)
\(=10-5x^2+6x+5x^2-6x\)
\(=10\)
Vì 10 là hằng số => giá trị của B không phụ thuộc vào biến x
\(10-5x.\left(x-1,2\right)+2x.\left(2,5x-3\right)\)
\(=10-\left(5x^2-6x\right)+\left(5x^2-6x\right)\)
\(=10-5x^2+6x+5x^2-6x\)
\(=10+\left(-5x^2+5x^2\right)+\left(6x-6x\right)\)
\(=10\)
a/ \(\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=17\)
<=> \(x^3-3x^2+3x-1+\left(2-x\right)\left(x+2\right)^2+3x^2+6x=17\)
<=> \(x^3+9x-1+2\left(x+2\right)^2-x\left(x+2\right)^2=17\)
<=> \(x^3+9x-1+2\left(x^2+2x+1\right)-x\left(x^2+2x+1\right)=17\)
<=> \(x^3+9x-1+2x^2+4x+2-x^3-2x^2-x=17\)
<=> \(12x+1=17\)
<=> \(12x=16\)
<=> \(x=\frac{4}{3}\)
b/ \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)
<=> \(\left(x+2\right)\left(x-2\right)^2-x\left(x^2-2\right)=15\)
<=> \(x\left(x-2\right)^2-x\left(x^2-2\right)+2\left(x-2\right)^2=15\)
<=> \(x\left(x^2-2x+1\right)-x\left(x^2-2\right)+2\left(x-2\right)^2=15\)
<=> \(x\left[x^2-2x+1-\left(x^2-2\right)\right]+2\left(x-2\right)^2=15\)
<=> \(x\left(x^2-2x+1-x^2+2\right)+2\left(x-2\right)^2=15\)
<=> \(x\left(3-2x\right)+2\left(x^2-2x+1\right)=15\)
<=> \(3x-2x^2+2x^2-4x+2=15\)
<=> \(2-x=15\)
<=> \(x=-13\)