K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phương trình trên có nghiệm bằng 1

Ta có thể phần tích thành ( x - 1 ) f(x)  bằng 0

\(\sqrt{5x^2+6x+5}-4=\frac{64x^3+4x}{5x^2+6x+6}-4\)

Bạn trục căn thức là ra ( x- 1)

16 tháng 6 2017

đặt \(t=\sqrt{5x^2+6x+5}\). khi đó pt tương đương:

\(t=\frac{64x^3+4x}{t^2+1}\)hay \(t^3+t=64x^3+4x\Leftrightarrow\left(64x^3-t^3\right)+\left(4x-t\right)=0\)

\(\left(4x-t\right)\left(16t^2+4xt+2\right)\)

đến đây tự giải tiếp bạn nhé.
 

Nhẩm nghiệm bằng 1,5 nha bạn

Phương trình trở thành :

\(x\sqrt{2x-2}-1,5=9-5x-1,5\)

Bạn trục căn thức sẽ được ( x - 1,5 )

26 tháng 6 2017

Bạn trục căn thức sẽ được ( x - 1,5 )

Vào lúc: 2017-06-15 21:45:18 Xem câu hỏi

Phương trình trên có nghiệm bằng 1

Ta có thể phần tích thành ( x - 1 ) f(x)  bằng 0

15 tháng 6 2017

D = 1,815863713 NHA s6.jpg Cẩm Tú ! ! !

K VÀ KB NHÉ ! ! !

15 tháng 6 2017

cách giải pn ơi

15 tháng 6 2017

hai người cùng làm chung 1 cv mất 8 giờ nên 1 giờ 2 người làm đc:

                     1:8=1/8 (cv)

hai người cùng làm trong 3 giờ được:

                     1/8.3=3/8 (cv)

vì người thứ 1 làm trong 2 giờ rồi hai người làm trong 3 giờ đc 50% cv nên người thứ nhất làm việc trong 2 giờ thì xong

                      50%-3/8=1/8 (cv)

1 giờ người thứ 1 làm đc

                      1/8:2=1/16 (cv)

1 giờ người thứ 2 làm đc:

                       1/8-1/16=1/16 (cv)

vì 1 giờ 2 người làm một mình thì xong 1/16 cv nên thời gian để 2 người làm xong cv đó một mình là

                       1:1/16=16 (giờ)

đáp số ..................................................................

ps: e nhớ là bài này e học từ hồi lớp 5 rồi

15 tháng 6 2017

vì \(c\le a\)nên \(\frac{1}{\left(c+1\right)^2}\ge\frac{1}{\left(a+1\right)^2}\)

\(VT\ge\frac{2}{\left(a+1\right)^2}+\frac{2}{\left(b+1\right)^2}+\frac{2}{\left(c+1\right)^2}\)

Áp dụng BĐT AM-GM: \(\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}+\frac{1}{\left(c+1\right)^2}\ge\frac{1}{\left(a+1\right)\left(b+1\right)}+\frac{1}{\left(b+1\right)\left(c+1\right)}+\frac{1}{\left(c+1\right)\left(a+1\right)}\)

\(=\frac{a+b+c+3}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}=\frac{a+b+c+3}{abc+a+b+c+4}\)(*)

Từ giả thiết: ab+bc+ca=3.Áp dụng BĐT AM-GM:\(3=ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Leftrightarrow abc\le1\)

và có BĐT \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=9\)\(\Leftrightarrow a+b+c\ge3\)

\(\Rightarrow a+b+c\ge3\ge3abc\)

từ (*): \(\frac{a+b+c+3}{abc+a+b+c+4}\ge\frac{a+b+c+3}{\frac{a+b+c}{3}+a+b+c+4}=\frac{3\left(a+b+c+3\right)}{4\left(a+b+c\right)+12}=\frac{3}{4}\)

do đó \(VT\ge2.\frac{3}{4}=\frac{3}{2}\)

Dấu = xảy ra khi a=b=c=1

nguồn: Hữu Đạt 

15 tháng 6 2017

thử đổi biến từ (a,b,c)->(y/x,z/y,x/z) 

15 tháng 6 2017

Đặt \(B=\frac{\sqrt{11+\sqrt{5}}+\sqrt{11-\sqrt{5}}}{\sqrt{11+2\sqrt{29}}}\)Ta có B>0

\(B^2=2\Rightarrow B=\sqrt{2}\)

Vậy \(A=\sqrt{2}+\sqrt{\left(2-\sqrt{2}\right)^2}=2\)

16 tháng 6 2017

Ta có: (1-x)(1-y)>= ( 1- \sqrt{xy})^2 
Q <= ((x+y)^2(1-x-y))/(x+y)(1-\sqrt{xy})^2 <= (x+y)(1-(x+y))/4(1-(x+y)/2)^2 <= (1-(x+y)/2)^2/8(1-(x+y)/2)^2 =1/8
Dấu = x=y=1/3 
 

15 tháng 6 2017

\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)

ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)

\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)

\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)

Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị 

15 tháng 6 2017

trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))