Tìm x,y,z : biết x,y,z tỉ lệ nghịch với 3,5,7 và 2x-y+3z=68
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x3 + 1 - (x3 - 2x2 + 3x + x2 - 2x + 3) = 0
x3 + 1 - x3 + 2x2 - 3x - x2 + 2x - 3 = 0
x2 - x - 2 = 0
x2 + x - 2x - 2 = 0
x(x + 1) - (2x + 2) = 0
x(x + 1) - 2(x + 1) = 0
(x - 2)(x + 1) = 0
x - 2 = 0 hoặc x + 1 = 0
x = 2 hoặc x = -1
Vậy x = 2 hoặc x = -1
\(x^3+1-\left(x^3-2x^2+3x+x^2-2x+3\right)=0\)
\(\Leftrightarrow x^3+1-x^3+2x^2-3x-x^2+2x-3=0\)
\(\Leftrightarrow\left(x^3-x^3\right)+\left(2x^2-x^2\right)+\left(-3x+2x\right)+\left(1-3\right)=0\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow x^2-1-x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-1-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)
Vậy x = -1 hoặc x = 2
1. thường xuyên làm bài tập cho mở mang trí óc
2. ứng dụng toán ra thời sống
3. bạn nên lên google để tìm hiểu bài toán hay nhé
chúc hok tốt nha
Hình bạn tự vẽ nha !!
A) Xét tam giác ABM và tam giác DCM có :
AM=DM (giả thiết)
Góc AMB=góc ACM (2 góc đối đỉnh)
BM=CM (giả thiết)
Suy ra tam giác ABM=tam giác DCM (c-g-c)
a)Xét tam giác ABM và tam giác DCM
có BM = CM (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{CMD}\)(đối đỉnh)
nên tam giác ABM = tam giác DCM (c - g - c)
b) Bạn ghi sai đề rồi
Ta có:
\(x^2-2y^2-xy=0\)
<=>\(\left(x^2-y^2\right)-\left(y^2-xy\right)=0\)
<=>\(\left(x-y\right)\left(x-y\right)-y\left(x+y\right)=0\)
<=> \(\left(x-y\right)\left(x-2y\right)=0\)
<=> x - 2y = 0 ( do x+y khác 0 )
<=> x =2y
Thay vào đề bài ta có
Q=\(\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
Từ \(x^2-2y^2=xy\Rightarrow x^2-2y^2-xy=0\)
\(\Rightarrow\left(x^2-y^2\right)-\left(y^2+xy\right)=0\)
\(\Rightarrow\left(x-y\right).\left(x-y\right)-y.\left(x-y\right)=0\)
\(\Rightarrow\left(x-y\right).\left(x-2y\right)=0\)
\(\Rightarrow x=2y\)
Thay vào đã dc:\(Q=\frac{1}{3}\)
Ta có:\(x^2-2y^2=xy\)
\(\Rightarrow x^2-xy-2y^2=0\)
\(\Rightarrow x^2+xy-2xy-2y^2=0\)
\(\Rightarrow x\left(x+y\right)-2y\left(x+y\right)=0\)
\(\Rightarrow\left(x+y\right)\left(x-2y\right)=0\)
\(\Rightarrow x-2y=0\)
\(\Rightarrow x=2y\)
Thay vào Q,ta có:
\(Q=\frac{x-y}{x+y}=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
a/ \(x^2-3xy+2y^2=0\Leftrightarrow(x^2-2xy)-(xy-2y^2)=0.\) \(\Leftrightarrow x\left(x-2y\right)-y\left(x-2y\right)=0\Leftrightarrow\left(x-2y\right)\left(x-y\right)=0.\) \(\Leftrightarrow\orbr{\begin{cases}x=y\\x=2y\end{cases},với..x,y\in R.}\)
- Với x = y thay vào phương trình 2x2 - 3xy + 9 = 0 thì được phương trình : 2x2 - 3x2 + 9 = 0 Tức là x2 = 9 Vậy x = y =3 và x = y = - 3.
- Với x = 2y Thay vào phương trình 2x2 - 3xy + 9 = 0 được 8y2 - 6y2 + 9 = 0 Tức là 2y2 + 9 = 0 Phương trình vô nghiệm.
Trả lời x= y = 3 và x = y = - 3 .
Hình dễ bạn tự vẽ nhé !
a) Xét tam giác ABC và tam giác AB'C' có:
AC = AC'
BAC= B'AC'
AB = AB
nên tam giác ABC = tam giác AB'C' ( c.g.c )
b) Từ tam giác ABC = tam giác AB'C' => C'B' = CB, ABC = AB'C', ACB = AC'B'
Hình dễ bn tự vẽ nhé
a,Xét \(\Delta ABC\)và\(\Delta AB’C’\),có:
\(AB=AB’\)(gt)
\(AC=AC’\)(gt)
\(\widehat{BAC}=\widehat{B’AC’}\)(đối đỉnh)
\(\Rightarrow\Delta ABC=\Delta AB’C’\)(c.g.c)
b,tam giác ABC và tam giác AB’C’ có những cặp cạnh, cặp góc bằng nhau là:
BC=B’C’(2 cạnh tương ứng)
\(\widehat{ABC}=\widehat{AB’C’}\)(2 góc tương ứng)
\(\widehat{BCA}=\widehat{B’C’A}\)(2 góc tương ứng)
k mik nhé!!!
#sadgirl#
Vì x,y,z tỉ lệ nghịch với 3,5,7 => \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{7}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{7}}=\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{5}}=\frac{3z}{\frac{3}{7}}=\frac{2x-y+3z}{\frac{2}{3}-\frac{1}{5}+\frac{3}{7}}=\frac{68}{\frac{94}{105}}=\frac{3570}{47}\)
\(\frac{2x}{\frac{2}{3}}=\frac{3570}{47}\Rightarrow2x=\frac{2380}{47}\Rightarrow x=\frac{1190}{47}\)
\(\frac{y}{\frac{1}{5}}=\frac{3570}{47}\Rightarrow y=\frac{714}{47}\)
\(\frac{3z}{\frac{3}{7}}=\frac{3570}{47}\Rightarrow3z=\frac{1530}{47}\Rightarrow z=\frac{510}{47}\)
Vậy ....
TBRTC:\(3x=5y=7z\Rightarrow\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{7}}\)
\(\Rightarrow\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{5}}=\frac{3z}{\frac{3}{7}}\)
Áp dụng t/c
Xong tính x,y,z