K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2018

       \(4x^4+4x^3+5x^2+8x-6\)

\(=4x^4-2x^3+6x^3-3x^2+8x^2-4x+12x-6\)

\(=2x^3\left(2x-1\right)+3x^2\left(2x-1\right)+4x\left(2x-1\right)+6\left(2x-1\right)\)

\(=\left(2x^3+3x^2+4x+6\right)\left(2x-1\right)\)

\(=\left[x^2\left(2x+3\right)+2\left(2x+3\right)\right]\left(2x-1\right)\)

\(=\left(x^2+2\right)\left(2x+3\right)\left(2x-1\right)\)

       \(4x^4+6x^3-4x^2+9x-15\)

\(=4x^4-4x^3+10x^3-10x^2+6x^2-6x+15x-15\)

\(=4x^3\left(x-1\right)+10x^2\left(x-1\right)+6x\left(x-1\right)+15\left(x-1\right)\)

\(=\left(4x^3+10x^2+6x+15\right)\left(x-1\right)\)

\(=\left[2x^2\left(2x+5\right)+3\left(2x+5\right)\right]\left(x-1\right)\)

\(=\left(2x^2+3\right)\left(2x+5\right)\left(x-1\right)\)

        

7 tháng 8 2018

3x- 27 x = 0

=> 3x ( x2 - 9 ) = 0

\(=>\orbr{\begin{cases}3x=0\\x^2-9=0\end{cases}}\) 

\(=>\orbr{\begin{cases}x=0\\x^2=9\end{cases}}\)

=> x = + 3

hoặc x = 0

7 tháng 8 2018

\(3x^2-27x=0\)

\(\Leftrightarrow3x\left(x+3\right)\left(x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}\)

12 tháng 8 2018

      \(a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)

\(=a\left(b^2-c^2\right)+b\left(c^2-b^2\right)+b\left(b^2-a^2\right)+c\left(a^2-b^2\right)\)

\(=\left(a-b\right)\left(b^2-c^2\right)+\left(c-b\right)\left(a^2-b^2\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(b+c\right)+\left(c-b\right)\left(a-b\right)\left(a+b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(b+c-a-b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

7 tháng 8 2018

      \(2x^2+y^2+2xy-8x-6y+10=0\)

\(\Rightarrow2.\left(2x^2+y^2+2xy-8x-6y+10\right)=0\)

\(\Rightarrow4x^2+2y^2+4xy-16x-12y+20=0\)

\(\Rightarrow\left(4x^2+y^2+16+4xy-8y-16x\right)+\left(y^2-4y+4\right)=0\)

\(\Rightarrow\left(2x+y-4\right)^2+\left(y-2\right)^2=0\left(1\right)\)

Ta có: \(\hept{\begin{cases}\left(2x+y-4\right)^2\ge0\forall x;y\\\left(y-2\right)^2\ge0\forall y\end{cases}\Rightarrow\left(2x+y-4\right)^2+\left(y-2\right)^2\ge0\forall x;y\left(2\right)}\)

Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}2x+y-4=0\\y-2=0\end{cases}\Rightarrow\hept{\begin{cases}2x+y=4\\y=2\end{cases}\Rightarrow}\hept{\begin{cases}2x+2=4\\y=2\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}}\)

Chúc bạn học tốt.