cho tam giác abc vuông tại a . trên tia bc lấy điểm d sao cho ba= bd . đường vuông góc với cạnh bc tại d cắt ac tại e , cắt ba tại f . chứng minnh
a,tam giác abe = tam giác dbe
b, be là tia phân giác của góc abc
c, tam giác cè là tam giác cân
d,ad song song cf
sdfgbnerfghjrtyuiocfvbnm
a) Xét t/giác ABE và t/giác DBE
có AB = BD (gt)
góc BAE = góc BDE = 900 (gt)
BE : chung
=> t/giác ABE = t/giác DBE (ch - cgv)
b) Ta có: t/giác ABE = t/giác DBE (cmt)
=> góc ABE = góc DBE (hai góc tương ứng)
=> BE là tia p/giác của góc ABD
hay BE là tia p/giác của góc ABC
c) Xét t/giác AEF và t/giác DEC
có góc FAE = góc CDE = 900 (gt)
AE = ED (Vì t/giác ABE = t/giác DBE)
góc AEF = góc DEC (đối đỉnh)
=> t/giác AEF = t/giác DEC (g.c.g)
=> EF = CF (hai cạnh tương ứng)
=> t/giác CEF là t/giác cân
d) Ta có: t/giác AEF = t/giác DEC (cmt)
=> AF = DC (hai cạnh tương ứng)
Mà AB + AF= BF
BD + DC = BC
Và AB = BD (gt)
=> BF = BC
=> t/giác BFC cân tại B
=> góc F = góc C = (1800 - góc B)/2 (1)
Ta lại có AB = BD (gt)
=> t/giác ABD cân tại B
=> góc BAD = góc BDA = (1800 - góc B)/2 (2)
Từ (1) và (2) suy ra góc BAD = góc F
mà góc BAD và góc F ở vị trí đồng vị
=> AD // CF (Đpcm)