a) x : ( -1/2 ) mũ 3 = -1/2 b) ( 3/4) mũ 5 . x = ( 3/4 ) mũ 7
Quy tắc chuyển vế của nhân chia có giống cộng trừ không nhỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 8 . 2n + 2n+1 = 2n . ( 8 + 2 ) = 2n . 10 = ....0
b) có vấn đề
c) 4n+3 + 4n+2 - 4n+1 - 4n = 4n . ( 43 + 42 - 4 - 1 ) = 4n . 75 = 4n-1 . 4 . 75 = 300 . 4n-1 \(⋮\)300
Xét tam giác BMK và tam giác CNK có:
BM=CN (gt)
Góc BKM=góc CKN (hai góc đối đỉnh)
MK=NK (K là trung điểm MN)
=> tam giác BMK=tam giác CNK (c.g.c)
=> BK=CK
=> K là trung điểm BC
=> B,K,C thẳng hàng.
#)Giải :
( Hình tự vẽ nha :P )
Xét \(\Delta BMK\)và \(\Delta CNK\)có :
BM = CN ( gt )
\(\widehat{BKM}=\widehat{CKN}\)( hai gọc đối đỉnh )
MK = NK ( K là trung điểm của MN )
=> \(\Delta BMK=\Delta CNK\)( c.g.c )
=> BK = CK ( hai cạnh tương ứng bằng nhau )
=> K là trung điểm của BC
=> B,K,C thẳng hàng
#~Will~be~Pens~#
a) \(\left(\frac{-1}{3}\right)^4=\frac{\left(-1\right)^4}{3^4}=\frac{1}{81}\)
b) \(\left(-2\frac{1}{4}\right)^3=\left(\frac{-9}{4}\right)^3=\frac{\left(-9\right)^3}{4^3}=\frac{-729}{64}\)
c) \(\left(-0,2\right)^2=\left(\frac{-1}{5}\right)^2=\frac{\left(-1\right)^2}{5^2}=\frac{1}{25}\)
d) \(\left(-5,3\right)^0=1\)
a)\(\left(\frac{-1}{3}\right)^4=\frac{1}{81}\)
b) \(\left(-2\frac{1}{4}\right)^3=\frac{-729}{64}\)
c) \(\left(-0,2\right)^2=\frac{1}{25}\)
d) \(\left(-5,3\right)^0=1\)
Cbht
\(x^2+4y^2+9\ge2xy+3y+6y\)
\(\Leftrightarrow x^2+4y^2+9-2xy-3x-6y\ge0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+3y^2-6y-3x-9\ge0\)
\(\Leftrightarrow\left(x-y\right)^2-3x+3y-3y-6y+3y^2+9\ge0\)
\(\Leftrightarrow\left(x-y\right)^2-3\left(x-y\right)-9y+3y^2+9\ge0\)
\(\Leftrightarrow\left(x-y\right)^2-3\left(x-y\right)+3\left(y^2-3y+\frac{9}{4}\right)-\frac{9}{4}.3+9\ge0\)
\(\Leftrightarrow\left(x-y\right)^2-3\left(x-y\right)+3\left(y-\frac{3}{2}\right)^2+\frac{9}{4}\ge0\)
\(\Leftrightarrow\left(x-y\right)^2-3\left(x-y\right)+\frac{9}{4}+3\left(y-\frac{3}{2}\right)^2\ge0\)
\(\Leftrightarrow\left(x-y-\frac{3}{2}\right)^2+3\left(y-\frac{3}{2}\right)^2\ge0\)
Ta có:
\(\left(x-y-\frac{3}{2}\right)^2\ge0\) \(\forall x,y\)
\(3\left(y-\frac{3}{2}\right)^2\ge0\) \(\forall y\)
\(\Rightarrow\left(x-y-\frac{3}{2}\right)^2+3\left(y-\frac{3}{2}\right)^2\ge0\) \(\forall x,y\)
Dấu = khi i\(y=\frac{3}{2}\)
\(x=\frac{3}{2}+\frac{3}{2}=3\)
b)Sửa đề: Chứng minh \(a^4+b^4+c^4+d^4\ge4abcd\)
Ta chứng minh bài toán phụ: \(a^2+b^2\ge2ab\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow\left(a^2-ab\right)-\left(ab-b^2\right)\ge0\) (lớp 7 chưa học hằng đẳng thức nên mình mới làm thế này thôi)
\(\Leftrightarrow a\left(a-b\right)-b\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\left(\text{BĐT đúng}\right)\Rightarrow\text{Q.E.D }\) (chỗ khúc này sửa a.b thành x,y nhé,đánh nhầm,lười đánh lại)
Áp dụng vào,ta có: \(\text{Vế trái}=\left(a^4+b^4\right)+\left(c^4+d^4\right)\ge2a^2b^2+2b^2c^2\)
\(=\left(\sqrt{2a^2b^2}\right)^2+\left(\sqrt{2b^2c^2}\right)^2\ge2\sqrt{2a^2b^2.2b^2c^2}=4abcd\) (đpcm)
#)Giải :
a) Đặt A = 29 + 299 = 29 + ( 211)9
A = ( 2 + 211)( 28 - 27 x 211 + ... - 2 x 277 + 288)
Nhân tử thứ nhất 2 + 211 = 2050
Nhân tử thứ hai là một số chẵn = 2A ( vì là tổng hiệu của các bội của 2 )
=> A = 2050 x 2A = 4100 x A => A chia hết cho 100
a) \(x:\left(\frac{-1}{2}\right)^3=\frac{-1}{2}\)
\(\Rightarrow x=\frac{-1}{2}.\left(\frac{-1}{2}\right)^3\)
\(\Rightarrow x=\left(\frac{-1}{2}\right)^4=\frac{1}{16}\)
b) \(\left(\frac{3}{4}\right)^5.x=\left(\frac{3}{4}\right)^7\)
\(\Rightarrow x=\left(\frac{3}{4}\right)^7:\left(\frac{3}{4}\right)^5\)
\(\Rightarrow x=\left(\frac{3}{4}\right)^2=\frac{9}{16}\)
Cảm ơn bn