K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2019

\(A=\left[x^2-1\right]\cdot\left[x^2-2\right]\cdot\left[x^2-3\right]\cdot...\cdot\left[x^2-2013\right]\)

Với x = 5 ta có : \(A=\left[5^2-1\right]\cdot\left[5^2-2\right]\cdot\left[5^2-3\right]...\left[5^2-2013\right]\)

\(A=\left[25-1\right]\left[25-2\right]\left[25-3\right]...\left[25-2013\right]\)

\(A=24\cdot23\cdot22\cdot...\cdot\left[-1988\right]\)

Tính nốt :v

Gọi UCLN (a2+a+1, a2+a-1)=d

=>\(\hept{\begin{cases}a^2+a+1⋮d\\a^2+a-1⋮d\end{cases}}\)=> a2+a+1-(a2+a-1)\(⋮\)d=>2\(⋮\)d(đến đây mình nghĩ đề sai thì phải)

5 tháng 6 2019

Gọi d là ước chung của a2 + a + 1 và a2 + a - 1 ( d \(\in\)N)

\(\Rightarrow\hept{\begin{cases}a^2+a+1⋮d\\a^2+a-1⋮d\end{cases}\Rightarrow\left[\left(a^2+a+1\right)-\left(a^2+a-1\right)\right]⋮d}\)

                                         => ( a+ a + 1 - a2 - a + 1 ) \(⋮\)d

                                         =>                 2                     \(⋮\)d => d \(\in\)Ư(2)

Mà a+ a + 1  = a(a+1) + 1

a và a + 1 là 2 STNLT nên tích a(a+1) là số chẵn => a(a+1) + 1 lẻ => a+ a + 1 lẻ

                                                                                                             Mà d là ước của a+ a + 1 => d lẻ

Vậy d \(\in\)Ư(2) = { 1 ; 2 } . d là số lẻ => d = 1

=> a2 + a + 1 và a2 + a - 1 nguyên tố cùng nhau.

5 tháng 6 2019

2. Các số đó là  153, 351, 450, 657, 756, 297, 459.

Còn lại mik ko biết thông cảm nha

k với

5 tháng 6 2019

câu 1 đáp án là 1998 ta lấy 333,666,999 cộng lại sẽ ra

5 tháng 6 2019

#)Giải :

Ta có : \(\frac{a}{c}=\frac{c}{b}\Rightarrow ab=c^2\)

lại có : \(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a\times\left(a+b\right)}{b\times\left(a+b\right)}=\frac{a}{b}\left(đpcm\right)\)

Vậy ............................................

5 tháng 6 2019

Ta có: a/c =c/b 
suy ra: 
(a/c)^2 = (c/b)^2 ......(1) 
Áp dụng tính chất của tỉ lệ thức: 
a^2/b^2 = c^2/b^2 = (a^2 + c^2)/(c^2 + b^2) ........(2) 
Mặt khác a/c = c/b 
Nhân 2 vế cho c/b ta được: 
a.c/b.c = c^2/b^2 
tức là a/b = (c/b)^2 ......(3) 
Từ (1), (2) và (3) ta có đpcm

5 tháng 6 2019

\(\left(x+\frac{1}{x}\right)^2=3\)

nên \(x+\frac{1}{x}=\sqrt{3}\)

hoặc \(x+\frac{1}{x}=-\sqrt{3}\)

Nếu \(x+\frac{1}{x}=\sqrt{3}\)

Suy ra \(\left(x+\frac{1}{x}\right)^3=3\sqrt{3}\)

suy ra \(x^3+\frac{1}{^{x^3}}+\frac{3x.1}{x}\left(x+\frac{1}{x}\right)=3\sqrt{3}\)

suy ra \(x^3+\frac{1}{x^3}+3\left(x+\frac{1}{x}\right)=3\sqrt{3}\)

Mà \(x+\frac{1}{x}=\sqrt{3}\)

nên \(x^3+\frac{1}{x^3}=0\)

Cmtt trường hợp còn lại

Chúc bạn học tốt!

5 tháng 6 2019

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)

+) \(ad+ab< bc+ab\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)( 1 )

+) \(ad+cd< bc+cd\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

5 tháng 6 2019

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\)

 Vì \(b,d>0\Rightarrow bd>0\)

\(\Rightarrow ad< bc\)

Ta lại có:

\(\frac{a}{b}=\frac{a\left(b+d\right)}{b\left(b+d\right)}=\frac{ab+ad}{b\left(b+d\right)}\)

\(\frac{a+c}{b+d}=\frac{b\left(a+c\right)}{b\left(b+d\right)}=\frac{ab+bc}{b\left(b+d\right)}\)

Vì \(b,d>0\)

Nên \(b\left(b+d\right)>0\)và \(d\left(b+d\right)>0\)         \(\left(1\right)\)

Mà \(ad< bc\Leftrightarrow ab+ad< ab+bc\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)ta có: \(\frac{ab+ad}{b\left(b+d\right)}>\frac{ab+bc}{b\left(b+d\right)}\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(\cdot\right)\)

Ta lại có:

\(\frac{a+c}{b+d}=\frac{d\left(a+c\right)}{d\left(b+d\right)}=\frac{ad+cd}{d\left(b+d\right)}\)

\(\frac{c}{d}=\frac{c\left(b+d\right)}{d\left(b+d\right)}=\frac{bc+cd}{d\left(b+d\right)}\)

Mà \(ad< bc\Rightarrow ad+cd< bc+cd\left(3\right)\)

Từ \(\left(1\right)\)và \(\left(3\right)\)ta có:

\(\frac{ad+cd}{d\left(b+d\right)}< \frac{bc+cd}{d\left(b+d\right)}\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(\cdot\cdot\right)\)

Từ \(\left(\cdot\right)\)và \(\left(\cdot\cdot\right)\)ta có: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Giải

Đổi 0,8 =\(\frac{8}{10}\)

Hiệu số phần bằng nhau là :

10 - 8 = 2 ( phần )

Số cây lớp 7A đã trồng là :

20 : 2 x 8 = 80 ( cây )

Số cây lớp 7B đã trồng là :

20 + 80 = 100 ( cây )

        Đáp số : 7A : 80 cây

                     7B : 100 cây                 

5 tháng 6 2019

Trả lời:

Lớp 7A 80 cây

Lớp 7B 100 cây

***

5 tháng 6 2019

Cho g(x) và h(x) thì đâu ra f(x) bạn ơi ?????

5 tháng 6 2019

Hỏi ad

5 tháng 6 2019

bây giờ phải làm sao

5 tháng 6 2019

Do \(\left|a\right|\ge0\Rightarrow b^5-b^4c\ge0\Rightarrow b^5\ge b^4c\Rightarrow b\ge c\)

Với \(b< 0\Rightarrow c< 0\left(KTM\right)\)

Với \(b=0\Rightarrow\left|a\right|=0\Rightarrow a=0\left(KTM\right)\)

Với \(b>0\Rightarrow a< 0\left(h\right)a=0\)

+) Với \(a=0\Rightarrow b-c=0\Rightarrow b=c>0\left(KTM\right)\)

+) Với \(a< 0\Rightarrow b>0;c=0\)

6 tháng 6 2019

zZz Cool Kid zZz bài bạn có ý đúng nhưng vẫn sai một số lỗi 

-) b ko thể bằng c

-) b=0 => |a|=0 là sai, vì b=0 nếu c âm thì -c vẫn dương => a > 0 vẫn tm 

-) ở dòng thứ 5, b=c cùng lớn hơn 0 nhưng vẫn còn th âm bạn chưa xét

Ta có:\(\left|a\right|=b^4.\left(b-c\right)\)

Vì |a| không âm => b4.(b-c) không âm => b-c không âm vì b4 không âm

Mà trong 3 số a,b,c chỉ có 1 số bằng 0 ,1 số âm, 1 số dương nên b > c => a khác 0

Xét b = 0 vì b>c nên c < 0 => a > 0 (tm) vì trong 3 số a,b,c chỉ có 1 số bằng 0 ,1 số âm, 1 số dương

Xét c = 0 vì b>c nên b>0 => a<0 (tm) vì trong 3 số a,b,c chỉ có 1 số bằng 0 ,1 số âm, 1 số dương

Vậy ... (tự kết luận)