Tìm x biết
|x+2|+|x-2|=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{a}{b}< \frac{c}{d}\)\(\Rightarrow\frac{ad}{bc}< \frac{bc}{bd}\)\(\Rightarrow ad< bc\)
b) ad < bc \(\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\)( vì bd > 0 )\(\Rightarrow\frac{a}{b}< \frac{c}{d}\)
a) Ta có: \(\hept{\begin{cases}\frac{a}{b}=\frac{ad}{bd}\\\frac{c}{d}=\frac{cb}{db}\end{cases}}\)
Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{cb}{bd}\Rightarrow ad< cb\)
b) Nếu \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow\frac{a}{b}< \frac{c}{d}\)
\(141;1\frac{1}{1997};\frac{266}{281};\frac{1}{173};\frac{2}{347};0;\frac{-7}{23};\frac{-15}{31};\frac{-27}{53}\)
Bài của học sinh : 。丁ớ… 。…丫仓u… 。…。…吖’…。
\(\left|3x-2\right|+5^{-1}=3+\left|x-\frac{2}{3}\right|\)
\(=>\left|3x-2\right|+\frac{1}{5}=3+\left|x-\frac{2}{3}\right|\)
\(=>\left|3x-2\right|-\left|x-\frac{2}{3}\right|=\frac{14}{5}\)
\(=>\left|3x-3.\frac{2}{3}\right|-\left|x-\frac{2}{3}\right|=\frac{14}{5}\)
\(=>3\left|x-\frac{2}{3}\right|-\left|x-\frac{2}{3}\right|=\frac{14}{5}\)
\(=>2\left|x-\frac{2}{3}\right|=\frac{14}{5}\)
\(=>\left|x-\frac{2}{3}\right|=\frac{7}{5}\)
\(=>\text{Ta có: }x-\frac{2}{3}=\frac{7}{5}\) \(< =>x=\frac{31}{15}\)
\(\text{Hoặc}\)\(\text{Ta có:}x-\frac{2}{3}=\frac{-7}{5}\)\(< =>x=\frac{-11}{15}\)
\(3\left|x-2\right|+\left|4x-8\right|=\left|-2\right|-\left|\frac{1}{3}\right|\)
\(\Leftrightarrow3\left|x-2\right|+\left|4\left(x-2\right)\right|=2-\frac{1}{3}\)
\(\Leftrightarrow3\left|x-2\right|+4\left|x-2\right|=\frac{6}{3}-\frac{1}{3}\)
\(\Leftrightarrow7\left|x-2\right|=\frac{5}{3}\)
\(\Leftrightarrow\left|x-2\right|=\frac{5}{3}\div7\)
\(\Leftrightarrow\left|x-2\right|=\frac{5}{21}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=\frac{5}{21}\\x-2=\frac{-5}{21}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{47}{21}\\x=\frac{37}{21}\end{cases}}\)
Vậy
#)Giải :
a) x + 2x + 3x + ... + 100x = - 213
=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213
=> 100x + 5049 = - 213
<=> 100x = - 5262
<=> x = - 52,62
#)Giải :
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)
\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{2}{3}\)
\(\frac{a+2}{2a+4}\)=\(\frac{1}{2}\)
Vậy với mọi a thuộc Z thì \(\frac{a+2}{2a+4}\)thuộc Z
Mình đoán thôi nha
\(M=\frac{-2x}{3}+3x\left(\frac{x}{6}-\frac{-2}{9}-\frac{7}{5}\right)-\frac{5x}{2}\left(\frac{x}{5}-\frac{4}{5}\right)\)
\(M=\frac{-2x}{3}+3x\left(\frac{x}{6}+\frac{2}{9}-\frac{7}{5}\right)-\frac{5x}{2}.\frac{x-4}{5}\)
\(M=\frac{-2x}{3}+3x\left(\frac{15x+20-126}{90}\right)-\frac{5x^2-20x}{10}\)
\(M=\frac{-2x}{3}+3x.\frac{15x-106}{90}-\frac{5.\left(x^2-4x\right)}{10}\)
\(M=\frac{-2x}{3}+\frac{45x^2-318x}{90}-\frac{x^2-4x}{2}\)
Ta có \(|x+2|+|x-2|=|x+2|+|2-x|\ge|x+2+2-x|=|4|=4.\)
Mà theo đề ra \(|x+2|+|x-2|=3< 4\)
Suy ra không có giá trị nào của \(x\)thỏa mãn đề bài .