CMR:Nếu a và b chia hết cho 3 thì a và b chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Nếu a < b
Ta có tính chất: \(\frac{a}{b}< \frac{a+c}{b+c}\)
Chứng minh: a < b nên ac < bc ( c > 0)
\(\Leftrightarrow ac+ab< bc+ab\)
\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+c}\)
Áp dụng: \(\frac{a}{b}< \frac{a+2019}{b+2019}\)
*Nếu a = b
Ta có tính chất: \(\frac{a}{b}=\frac{a+c}{b+c}\)(Tính chất dãy tỉ số bằng nhau)
Áp dụng: \(\frac{a}{b}=\frac{a+2019}{b+2019}\)
*Nếu a > b
Ta có tính chất: \(\frac{a}{b}>\frac{a+c}{b+c}\)
Chứng minh: a > b nên ac > bc ( c > 0)
\(\Leftrightarrow ac+ab>bc+ab\)
\(\Leftrightarrow a\left(b+c\right)>b\left(a+c\right)\Leftrightarrow\frac{a}{b}>\frac{a+c}{b+c}\)
Áp dụng: \(\frac{a}{b}>\frac{a+2019}{b+2019}\)
b,Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{y}{5}=\frac{x}{2}=\frac{y-x}{5-2}=\frac{15}{3}=5\)
Vậy : \(\hept{\begin{cases}\frac{y}{5}=5\Leftrightarrow y=25\\\frac{x}{2}=5\Leftrightarrow x=10\end{cases}}\)
\(\frac{2x-y}{x+y}=\frac{2}{3}\Rightarrow\frac{6x-3y}{2x+2y}=0\)
\(\Rightarrow6x-3y=0\)
\(3.\left(2x-y\right)=0\Rightarrow2x-y=0\)
\(\Rightarrow2x=y\)
\(adtcdts=ntc:\)
\(\frac{y}{5}=\frac{x}{2}=\frac{y-x}{5-2}=\frac{15}{3}=5\)
Cứ thế tính x,y
a) Ta có: \(\widehat{xOy}=120^o\)
có Om là tia phân giác
=> \(\widehat{mOy}=\widehat{mOx}=120^o:2=60^o\)
Oy' là tia đối tia Oy
=> \(\widehat{yOy'}=180^o\)
=> \(\widehat{xOy'}=\widehat{yOy'}-\widehat{yOx}=180^o-120^o=60^o\)
=> \(\widehat{xOy'}=\widehat{xOm}=60^o\)
Mặt khác Ox nằm giữa hai tia Om, Oy'
=> Õx là phân giác góc y'Om
b) Ta có: Od nằm phóa ngoài góc xOy
Oy' nằm phía ngoài góc xOy
Mà \(\widehat{xOy'}=60^o< 90^o=\widehat{xOd}\)
=> Oy' nằm giữa hai tia Ox, Od
c) \(\widehat{mOc}=\widehat{mOy}+\widehat{yOc}=60^o+90^o=150^o\)
d) Ta có: On là phân giác góc dOc
mà \(\widehat{dOc}=360^o-\widehat{xOy}-\widehat{xOd}-\widehat{yOc}=60^o\)
=>\(\widehat{dOn}=\widehat{nOc}=60^o:2=30^o\)
=> \(\widehat{mOn}=\widehat{mOc}+\widehat{cOn}=150^O+30^O=180^O\)
\(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^2}+....+\frac{100}{2^{100}}\)
\(\Rightarrow2A=1+\frac{2}{2}+\frac{3}{2^2}+...+\frac{100}{2^{99}}\)
\(\Rightarrow2A-A=1+\frac{2}{2}+\frac{3}{2^2}+...+\frac{100}{2^{99}}-\frac{1}{2}-\frac{2}{2^2}-...-\frac{100}{2^{100}}\)
\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\)
\(\Rightarrow A< 1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)(3)
Đặt \(P=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)(2)
\(\Rightarrow2P=2+1+\frac{1}{2}+...+\frac{1}{2^{98}}\)
\(\Rightarrow2P-P=2+1+\frac{1}{2}+...+\frac{1}{2^{98}}-1-\frac{1}{2}-...-\frac{1}{2^{99}}\)
\(\Rightarrow P=2-\frac{1}{2^{99}}< 2\)(1)
Từ (1),(2),(3) => A<2
Giải
Ta có A =1/2 + 2/2^2 + 3/2^3 + ... + 100/2^100
=> 2A = 1 + 2/2 + 3/2^2 + ... + 100/2^99
=> 2A - A = 1 + 1/2 + 1/2^2 + 1/2^3 + ... + 1/2^99 - 100/2^100
=> A = ( 1 - 100/2^100) + 1/2 + 1/2^2 + 1/2^3 + ... + 1/2^99 (*)
Đặt B = 1/2 + 1/2^2 + 1/2^3 + ... + 1/2^99
=> 2B = 1 + 1/2 + 1/2^2 + ... + 1/2^98
=> 2B - B = 1 - 1/2^99
=> B = 1 - 1/2^99
Thay B vào (*) ta được:
A = ( 1 - 100/2^100 ) + ( 1 - 1/2^99 )
A = 2 - ( 100/2^100 + 1/2^99 ) < 2
=> A < 2 (đpcm)
Điều kiện : \(x-2019\ge0\)
\(x\ge2019\)
\(\orbr{\begin{cases}x-2019=x-2019\\x-2019=-\left(x-2019\right)\end{cases}}\)
\(\orbr{\begin{cases}0=0\left(llđ\right)\\x-2019=-x+2019\end{cases}\Rightarrow x=R}\) ( ngoặc vuông lấy toàn bộ nghiệm )
Suy ra với mọi \(x\ge2019\) thì thỏa mãn đề bài ( Vì so điều kiện nên chỉ lấy số lớn hơn hoặc bằng 2019 )
\(|x-2019|=x-2019\)
\(\Leftrightarrow\hept{\begin{cases}x-2019=x-2019\\x-2019=-x+2019\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-x=-2019+2019\\x+x=2019+2019\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}0=0\\2x=4038\Leftrightarrow x=2019\end{cases}}\)
Vậy .................
các bạn ơi đề bài của bài trên là THỰC HIỆN PHÉP TÍNH HỢP LÝ ( NẾU CÓ ) nhé . Lúc tạo câu hỏi mình không để ý nên ghi sai
a)
Ta có: P(7) = (a + 9).73 + (b + 6).7 + 2018
P(-7) = (a + 9).(–7)3 + (b + 6).(–7) + 2018
Do đó: P(7) + P(–7) = 2018 + 2018 = 4036
⇒ P(7) = 4036 – P(–7) = 4036 – 4 = 4032
b)
- Với x = 2 ta có 22 + 117 = 121 = y2
⇒ y = 11 (thỏa mãn y là số nguyên tố)
- Với x > 2, do x là số nguyên tố nên x là số lẻ.
Suy ra y2 = x2 + 117 là số chẵn, y > 2
- Có y là số chẵn, y > 2 mà y là số nguyên tố ⇒ không có giá trị nào của y.
- Vậy x = 2; y = 11.
= 7+(37/12)-(1/12+5)
=7+(37/12)-6
=49/12
\(7+\left(\frac{7}{12}-\frac{1}{2}+3\right)-\left(\frac{1}{12}+5\right)\)
\(=7+\frac{7}{12}-\frac{1}{2}+3-\frac{1}{12}-5\)
\(=\left(7+3-5\right)+\left(\frac{7}{12}-\frac{1}{12}-\frac{1}{2}\right)\)
\(=5+\left(\frac{6}{12}-\frac{1}{2}\right)\)
\(=5+0\)
\(=5\)
#)Ghi lại đề đê !
a và b chia hết cho 3 sẵn òi, k có CM thêm ns đâu !