Phân tích
a) a . ( x + 2) - 2y . ( x -y)
b)5x ( x-y ) - ( y - x)
c) x . ( x+3) + ( 3 + x )
d) x + 8n (n thuộc N)
e) ( x -1)2 + y . ( n -1 )
f) 4x . ( x -2) - (2x)2
g) ( x -2 )2 - ( 2 -x)3
GIÚP MK NHA MK ĐANG CẦN GẤP !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^8+x^7+1\)
\(=x^8-x^2+x^7-x+x^2+x+1\)
\(=x^2\left(x^6-1\right)+x\left(x^6-1\right)+x^2+x+1\)
\(=\left(x^2+x\right)\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x\right)\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x\right)\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1\)
\(=\left(x^5+x^4+x^2+x\right)\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1\)
\(=\left(x^6-x^4+x^3-x\right)\left(x^2+x+1\right)+x^2+x+1\)
\(=\left(x^6-x^4+x^3-x+1\right)\left(x^2+x+1\right)\)
Chúc bạn học tốt.
a, \(\Delta OIN=\Delta OIP\left(g.c.g\right)\Rightarrow IN=IP\) ( 2 cạnh tương ứng)
Mà \(Ot\perp NP\)nên N và P đối xứng với nhau qua trục Ot.
b, Xét tứ giác ONMP có: I là trung điểm của NP (gt)
I là trung điểm của OM (gt)
\(\Rightarrow ONMP\)là hình bình hành.
Mà 2 đường chéo OM và NP vuông góc với nhau
\(\Rightarrow ONMP\)là hình thoi.
c, \(\widehat{xOy}=90^0\Rightarrow ONMP\) là hình vuông.
Chúc bạn học tốt.
bài 2
P= (x+1)(x2-x+1)+x-(x-1)(x2+x+1)+2010 với x = -2010
= (x3+1) + x - (x3-1) + 2010
= x3 + 1 + x - x3 + 1 + 2010
= x + 2 + 2010
= 2010 + 2 + 2010
=4022
Q=16x(4x2-5)-(4x+1)(16x2-4x + 1) với x = 1/5
= (4x)3-16.5x - [(4x)3+1]
= (4x)3 - 16.5x - (4x)3 - 1
= -16.5x - 1
= -16.5.1/5 - 1
= -16-1
=-17
a) (x-3)(x2+3x+9)-x(x-4)(x+4)=41
<=> x3 - 33 - x(x2 - 42) = 41
<=> x3 - 27 - x3 + 16x = 41
<=> 16x = 68
<=> x= 4,25
b) (x+2)(x2-2x+4)-x(x2+2)=4
<=> x3 + 23 - x3 - 2x =4
<=> 8 - 2x = 4
<=> 2x = 4
<=> x= 1/2
bạn cho đề sai vì khi thuế 1 vào pt trên ko chia hết cho 3 bạn coi đề kĩ lại
a/ \(\left(x+2\right)\left(x+4\right)\left(x+3\right)^2-12=\left(x^2+6x+8\right)\left(x^2+6x+9\right)-12\)
đặt \(x^2+6x+8=y=>y\left(y+1\right)-12=y^2+2.\frac{1}{2}y+\frac{1}{4}-\frac{1}{4}-12=\left(y+\frac{1}{2}\right)^2-12,25=\left(y+12,75\right)\left(y-11,75\right)\)
a) \(A=\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x+6\right)-10\)
\(=\left(x^2+8x+12\right)\left(x^2+8x+15\right)-10\)
Đặt \(x^2+8x+12=t\)
Khi đó ta có:
\(A=t\left(t+3\right)-10\)
\(=t^2+3t-10\)
\(=\left(t-2\right)\left(t+5\right)\)
Thay trở lại ta có:
\(A=\left(x^2+8x+10\right)\left(x^2+8x+17\right)\)
b) \(B=x\left(2x+1\right)\left(2x+3\right)\left(4x+8\right)-18\)
\(=\left(4x^2+8x\right)\left(4x^2+8x+3\right)-18\)
Đặt \(4x^2+8x=t\)
Khi đó ta có:
\(B=t\left(t+3\right)-18=t^2+3t-18=\left(t-3\right)\left(t+6\right)\)
Thay trở lại ta có:
\(B=\left(4x^2+8x-3\right)\left(4x^2+8x+6\right)=2\left(4x^2+8x-3\right)\left(2x^2+4x+3\right)\)
a) ktra lại đề
b) \(5x\left(x-y\right)-\left(y-x\right)=\left(x-y\right)\left(5x+1\right)\)
c) \(x\left(x+3\right)+\left(3+x\right)=\left(x+3\right)\left(x+1\right)\)
f) \(4x\left(x-2\right)-\left(2x\right)^2=4x^2-8x-4x^2=-8x\)
g) \(\left(x-2\right)^2-\left(2-x\right)^3=\left(x-2\right)^2+\left(x-2\right)^3=\left(x-2\right)^2\left(x-1\right)\)