Cho x > 0 Cmr
a) 2x + \(\frac{6}{x}\)\(\ge\) \(4\sqrt{3}\)
b) \(\frac{4x^2-2x+25}{x}\ge18\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+27y^3=1-9xy\left(x+3y\right)\)
<=> \(x^3+27y^3+9xy\left(x+3y\right)=1\)
<=> \(\left(x+3y\right)^3=1\)
<=> \(x+3y=1\)
Vậy \(M=1\)
\(x^3+27x^3=1-9xy\left(x+3y\right)\))
\(=\left(x+3y\right)\left(x^2-3xy+9y^2\right)=1-9xy\left(x+3y\right)\)
=\(\left(x+3y\right)\left(x^2-3xy+9y^2\right)-1+9xy\left(x+3y\right)=0\)
=\(\left(x+3y\right)\left(x^2-3xy+9y^2+9xy\right)-1=0\)
=\(\left(x+3y\right)\left(x^2+6xy+9y^2\right)-1=0\)
=\(\left(x+3y\right)\left(x+3y\right)^2-1=0\)
=\(\left(x+3y\right)\left(x+3y\right)^2=1\)
\(\Rightarrow x+3y=\left(x+3y\right)^2=1\)
\(\Rightarrow x+3y=1\)
a) \(x^2-3xy+x-3y=x\left(x-3y\right)+\left(x-3y\right)=\left(x-3y\right)\left(x+1\right)\)
b) \(x^2-6x-y^2+9=x^2-6x+9-y^2=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
c) \(7x^3y-14x^2y+7xy=7xy\left(x^2-2x+1\right)=7xy\left(x-1\right)^2\)
\(x^2-3xy+x-3y=\left(x^2+x\right)-\left(3xy+3y\right)=x\left(x+1\right)-3y\left(x+1\right)=\left(x+1\right)\left(x-3y\right)\)
\(x^2-6x-y^2+9=\left(x^2-2.x.3+3^2\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
\(7x^3y-14x^2y+7xy=\left(7x^3y-7x^2y\right)-\left(7x^2y-7xy\right)=7x^2y.\left(x-1\right)-7xy.\left(x-1\right)\)
\(=\left(x-1\right).\left(7x^2y-7xy\right)=7xy.\left(x-1\right).\left(x-1\right)=7xy.\left(x-1\right)^2\)
x3-3x2-x+2
=x2(x+3)-(x+3)
=(x+3)(x2-1)
=(x+3)(x-1)(x+1)
học tốt nha !!!
\(x^3-3x^2-x+2=x^2\left(x-3\right)+2\)\(2\)\(=\left(x^2+2\right)\left(x-3\right)\)
Mik k chắc cho lắm . chúc bạn học tốt:D
<=>(x2+y2+z2+2xy+2yz+2xz)+(x2+2x+1)+(y2+4y+4)=0
<=>(x+y+z)2+(x+1)2+(y+2)2=0
Mà \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\Rightarrow\left(x+y+z\right)^2+\left(x+1\right)^2+\left(y+2\right)^2\ge0}\)
=>\(\hept{\begin{cases}x+y+z=0\\x+1=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}z=3\\x=-1\\y=-2\end{cases}}}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow a.d=b.c\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{5a}{5c}=\frac{5b}{5d}=\frac{5a+5b}{5c+5d}=\frac{5a-5b}{5c-5d}\)
\(\Rightarrow\frac{5a+5b}{5c+5d}=\frac{5a-5b}{5c-5d}\)
a) Áp dụng AM-GM ta có:
\(2x+\frac{6}{x}\ge2\sqrt{2x.\frac{6}{x}}=2\sqrt{12}=4\sqrt{3}\)
Dấu "=" xảy ra <=> \(x=\sqrt{3}\)
b) \(\frac{4x^2-2x+25}{x}\ge18\)
<=> \(4x^2-2x+25\ge18x\)
<=> \(4x^2-20x+25\ge0\)
<=> \(\left(2x-5\right)^2\ge0\) luôn đúng
Dấu "=" xảy ra <=> \(x=2,5\)
a) Vì x > 0
Nên áp dụng BĐT Cô-si ta có: \(2x+\frac{6}{x}\ge2\sqrt{2x.\frac{6}{x}}=2\sqrt{12}=4\sqrt{3}\)
Vậy => ĐPCM
b) Ta có: \(\frac{4x^2-2x+25}{x}=\frac{\left(2x\right)^2-2.2x.\frac{1}{2}+\frac{1}{4}+\frac{99}{4}}{x}=\frac{\left(2x-\frac{1}{2}\right)^2+\frac{99}{4}}{x}\)
P/s: phân tích tới đây thôi, mình chưa nghĩ ra