Viết các số sau dưới dạng phân số −ab với a, b thuộc Z, b khác 0 để chỉ ra rằng các số đó là số hữu tỉ: 0; 2; 5; 21; 3; -3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số học sinh bốn khối 6, 7, 8, 9 lần lượt là x, y, z, t ta có
x/9=y/8=z/7=t/6 và y−t=70
Theo tính chất dãy tỉ số bằng nhau :
y/8=t/6 = y−t/8−6/ = 70/ 2=35.y8=t6=y−t8−6=702=35.
Do đó y=35.8=280 ; t=35.6=210.
Từ x/9=y/8 ta có x = 9 . y/8 = 9. 280/ 8=315
x/9=z/7⇒z=x.7/9=315.7/9=245
Vậy : khối 6 có 315 học sinh.
khối 7 có 280 học sinh.
khối 8 có 245 học sinh.
khối 9 có 210 học sinh.
Gọi \(a,b,c,d\)lần lượt là số học sinh các khối 6,7,8,9 \((a,b,c,d\inℕ^∗)\)
Ta có : \(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}\)
Mà số học sinh khối 9 ít hơn số học sinh khối 7 là 70 học sinh nên ta lại có : \(d-b=70\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}=\frac{d-b}{8-6}=\frac{70}{2}=35\)
\(\frac{a}{9}=35\Leftrightarrow a=315\)
\(\frac{b}{8}=35\Leftrightarrow b=280\)
\(\frac{c}{7}=35\Leftrightarrow c=245\)
\(\frac{d}{6}=35\Leftrightarrow d=210\)
Vậy : ....
a) Phân tích bài toán: Giả sử M và N là hai điểm của đường thẳng xy mà AM = AN. Nếu gọi H là chân đường vuông góc kẻ từ điểm A đến xy thì HM, HN lần lượt là hình chiếu của các đường xiên AM, AN.
Từ AM = AN suy ra HM = HN, từ đó xác định được hai điểm M, N.
Kẻ AH vuông góc với xy (H ∈ xy)
Lấy hai điểm M, N trên xy sao cho HM = HN (1)
(dùng compa vẽ một đường tròn tâm H bán kính tùy ý; đường tròn này cắt đường thẳng xy tại hai điểm M, N thỏa mãn HM = HN)
Hai đường xiên AM, AN lần lượt có hình chiếu là HM và HN, do đó từ (1) suy ra AM = AN
b) Xét trường hợp D ở giữa M và N
- Nếu D ≡ H thì AD = AH, suy ra AD > AM (đường vuông góc ngắn hơn đường xiên)
- Nếu D ở giữa M và H thì HD < HM, do đó AD < AM (đường xiên có hình chiếu ngắn hơn thì ngắn hơn)
- Nếu D ở giữa H và N thì HD < HN, do đó AD < AN.
Theo a) ta có AM = AN nên AD < AM
Vậy khi D ở giữa M và N thì ta luôn có AD < AM
Lời giải:
a) Giả sử M và N là hai điểm của đường thẳng xy mà AM = AN.
Nếu gọi H là chân đường vuông góc kẻ từ điểm A đến xy thì HM, HN lần lượt là hình chiếu của các đường xiên AM, AN.
Từ AM = AN suy ra HM = HN, từ đó xác định được hai điểm M, N.
Kẻ AH vuông góc với xy (H ∈ xy)
Lấy hai điểm M, N trên xy sao cho HM = HN (1)
(dùng compa vẽ một đường tròn tâm H bán kính tùy ý; đường tròn này cắt đường thẳng xy tại hai điểm M, N thỏa mãn HM = HN)
Hai đường xiên AM, AN lần lượt có hình chiếu là HM và HN, do đó từ (1) suy ra AM = AN
b) Xét trường hợp D ở giữa M và N
- Nếu D ≡ H thì AD = AH, suy ra AD > AM (đường vuông góc ngắn hơn đường xiên)
- Nếu D ở giữa M và H thì HD < HM, do đó AD < AM (đường xiên có hình chiếu ngắn hơn thì ngắn hơn)
- Nếu D ở giữa H và N thì HD < HN, do đó AD < AN.
Theo a) ta có AM = AN nên AD < AM
Vậy khi D ở giữa M và N thì ta luôn có AD < AM
Giải:
Xét tam giác vuông AHM và ANM có:
\(\Delta AHM\perpởH;\Delta ANM\perpởN\)
cạnh huyền AM chung
góc nhọn \(\widehat{A_1}=\widehat{A_2}\)
=> tam giác AHM = tam giác ANM ( cạnh huyền-góc nhọn)
=> AH=AN
=> Tam giác AHN cân tại A (1)
Tam giác ABH có \(\widehat{AHB}=90^o\): \(\widehat{B}+\widehat{BAH}+\widehat{AHB}=180^o\), mà \(\widehat{B}=60^o;\widehat{AHB}=90^o\)
\(\Rightarrow\widehat{BAH}=30^o\)
Mà: \(\widehat{BAC}=90^o\Rightarrow\widehat{HAN}=\widehat{BAC}-\widehat{BAH}=90^o-30^o=60^o\)(2)
Từ (1) và (2) => tam giác AHN đều
b, Gọi O là giao điểm của AM và HN
Xét tam giác AHO và ANO có:
AH=AN
\(\widehat{A_1}=\widehat{A_2}\)
AO chung
=> tam giác AHO = tam giác ANO (c.g.c)
=> HO=NO
=> O là trung điểm HN (1)
Ta có: tam giác AHO = tam giác ANO (chứng minh trên)
=>\(\widehat{AOH}=\widehat{AON}\), mà \(\widehat{AOH}+\widehat{AON}=180^o\)
\(\Rightarrow\widehat{AOH}=\widehat{AON}=90^ohayAO\perp HN\) (2)
Từ (1) và (2) => AO là đường trung trực của HN
=> AM là đường trung trực của HN
c, chưa ra
CM: a) Xét t/giác AHM và t/giác ANM
có : \(\widehat{AHM}=\widehat{ANM}=90^0\) (gt)
AM : chung
\(\widehat{A_1}=\widehat{A_2}\) (gt)
=> t/giác AHM = t/giác ANM (ch - gn)
=> AH = AN (2 cạnh t/ứng)
=> t/giác AHN cân tại A (1)
Xét t/giác ABC có \(\widehat{A}\) = 900 => \(\widehat{ABC}+\widehat{C}\)= 900
Xét t/giác AHC có \(\widehat{AHC}=90^0\) => \(\widehat{HAC}+\widehat{C}=90^0\)
=> \(\widehat{ABC}=\widehat{HAC}\)
Mà \(\widehat{ABC}=60^0\) => \(\widehat{HAC}=60^0\) (hay \(\widehat{HAN}=60^0\)) (2)
Từ (1) và (2) => t/giác AHN là t/giác đều
b) Ta có: t/giác AHM = t/giác ANM (cmt)
=> HM = MN (2 cạnh t/ứng)
=> M \(\in\)đường trung trực của HN
Ta lại có: AH = AN (cmt)
=> A \(\in\)đường trung trực của HN
mà A \(\ne\) M => AM là đường trung trực của HN
c) Do \(\widehat{DHA}\)là góc ngoài của t/giác AHN
=> \(\widehat{DHA}=\widehat{HAN}+\widehat{ANH}=2.60^0=120^0\) (t/giác AHN là t/giác đều => góc HAN = góc AHN = góc HNA = 600)
Ta có: \(\widehat{DAH}+\widehat{HAC}=90^0\) => \(\widehat{DAH}=90^0-\widehat{HAC}=90^0-60^0=30^0\) (3)
Xét t/giác AHD có : \(\widehat{ADH}+\widehat{AHD}+\widehat{DAH}=180^0\) (tổng 3 góc của 1 t/giác)
=> \(\widehat{HDA}=180^0-\widehat{DHA}-\widehat{DAH}=180^0-120^0-30^0=30\)(4)
Từ (3) và (4) => \(\widehat{HDA}=\widehat{DAH}=30^0\) => t/giác AHD cân tại H => DH = AH
mà AH = HN (vì t/giác AHN là t/giác đều)
=> DH = HN => AH là trung tuyến của t/giác AND
\(|2x-5|-|4x-7|=12\left(1\right)\)
Ta có:
\(2x-5=0\Leftrightarrow x=\frac{5}{2}\)
\(4x-7=0\Leftrightarrow x=\frac{7}{4}\)
Lập bảng xét dấu :
+) Với \(x< \frac{5}{2}\Rightarrow\hept{\begin{cases}2x-5< 0\\4x-7< 0\end{cases}\Rightarrow\hept{\begin{cases}|2x-5|=5-2x\\|4x-7|=7-4x\end{cases}\left(2\right)}}\)
Thay (2) vào (1) ta được :
\(\left(5-2x\right)-\left(7-4x\right)=12\)
\(5-2x-7+4x=12\)
\(-2+2x=12\)
\(2x=14\)
\(x=7\)( loại )
+) Với \(\frac{5}{2}\le x\le\frac{7}{4}\Rightarrow\hept{\begin{cases}2x-5>0\\4x-7< 0\end{cases}\Rightarrow\hept{\begin{cases}|2x-5|=2x-5\\|4x-7|=7-4x\end{cases}\left(3\right)}}\)
Thay (3) vào (1) ta được :
\(\left(2x-5\right)-\left(7-4x\right)=12\)
\(2x-5-7+4x=12\)
\(6x-12=12\)
\(6x=24\)
\(x=4\)(loại )
+) Với \(x>\frac{7}{4}\Rightarrow\hept{\begin{cases}2x-5>0\\4x-7>0\end{cases}\Rightarrow\hept{\begin{cases}|2x-5|=2x-5\\|4x-7|=4x-7\end{cases}\left(4\right)}}\)
Thay (4) vào (1) ta được :
\(\left(2x-5\right)-\left(4x-7\right)=12\)
\(2x-5-4x+7=12\)
\(-2x+2=12\)
\(-2x=10\)
\(x=-5\)(loại )
Vậy ko có giá trị x nào thỏa mãn đầu bài.
\(\frac{3}{2}x-1\frac{1}{2}=x-\frac{3}{4}\)
\(\Leftrightarrow\frac{3}{2}x-x=\frac{-3}{4}+1\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{2}x=\frac{3}{4}\)
\(\Leftrightarrow x=\frac{3}{2}\)
Vậy...
( bài này bảo ko hỉu chỗ chuyển còn đc chứ đừng bảo ko hiểu phép tính đấy )
Bài 2:
a) \(\frac{x}{-27}=\frac{-3}{x}\Leftrightarrow-\frac{x}{27}=-\frac{3}{x}\Leftrightarrow-x.x=\left(-27\right).\left(-3\right)\Leftrightarrow-x^2=-81\Leftrightarrow\orbr{\begin{cases}x=9\\x=-9\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=9\\x=-9\end{cases}}\)
b) \(\frac{-9}{x}=\frac{-x}{\frac{4}{49}}\Leftrightarrow-\frac{9}{x}=-\frac{49x}{4}\Leftrightarrow-9.4=-x.49x\Leftrightarrow-36=-49x^2\Leftrightarrow\orbr{\begin{cases}x=\frac{6}{7}\\x=-\frac{6}{7}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{6}{7}\\x=-\frac{6}{7}\end{cases}}\)
a)/x-2/+/x-5/=3
TH1:
x-2+x-5=3
x+x-2-5=3
2x-7=3
2x=3+7
2x=10
x=10:2
x=5
TH2
x-2+x-5= -3
x+x-2-5=-3
2x-7=-3
2x=-3+7
2x=4
x=4:2
x=2
Vậy x\(\in\){5;2}
1 + 1 = 2
2 + 2 = 4
3 + 3 = 6
4 + 4 = 8
5555555555 . 99999999 = 55e+175.55555
~ Study well ~
1+1=2
2+2=4
3+3=6
5555555555 x 99999999=5.5555555e+17