Đơn giản các biểu thức:
a) (3b2)2 - b3(1- 5b);
b) y(16y - 2y3) - (2y2)2;
c) (-1/2x)3 - x(1 - 2x - 1/8x2);
d) (0,2a3)2 - 0,01a4(4a2 - 100).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có: \(A=x+\frac{1}{x^2}=\left(\frac{1}{x^2}+\frac{x}{8}+\frac{x}{8}\right)+\frac{3}{4}x\ge3\sqrt[3]{\frac{1}{x^2}.\frac{x}{8}.\frac{x}{8}}+\frac{3}{4}.2\)
\(=3.\frac{1}{4}+\frac{3}{2}=\frac{3}{4}+\frac{3}{2}=\frac{9}{4}\)
Dấu "=" xảy ra khi: \(\frac{1}{x^2}=\frac{x}{8}\Leftrightarrow x^3=8\Leftrightarrow x=2\)
Vậy \(Min\left(A\right)=\frac{9}{4}\)khi \(x=2\)
Học tốt!!!!
Để A Max => 2012/5-x Max =>5-x Min .
Ta xét 2 TH:
+> TH1: 5-x > 0 => x<5.
+> TH2 : 5-x <0=> x>5
Từ 2 TH trên suy ra để A Max thì x<5.
=> 5-x là số tự nhiên nhỏ nhất thỏa mãn yêu cầu => 5-x=1 <=>x=4
Khi đó , Max A=2012 .
Vậy để A nhận giá trị lớn nhất thì x=4 <=> Max A=2012