K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
29 tháng 6 2024

\(x^2+5y^2< 4xy+2y\\ \Rightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-2y+1\right)< 1\\ \Rightarrow\left(x-2y\right)^2+\left(y-1\right)^2< 1\) (1)

Vì x; y đều là các số nguyên

nên x-2y và y-1 cũng là các số nguyên (2)

Lại có: \(\left(x-2y\right)^2\ge0,\left(y-1\right)^2\ge0\Rightarrow\left(x-2y\right)^2+\left(y-1\right)^2\ge0\forall x,y\inℤ\) (3)

Từ (1) và (2) và (3) \(\Rightarrow0\le\left(x-2y\right)^2+\left(y-1\right)^2< 1\) và x-2y, y-1 là các số nguyên

Do đó: \(\left(x-2y\right)^2=\left(y-1\right)^2=0\\ \Rightarrow\left\{{}\begin{matrix}x-2y=0\\y-1=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=2.1=2\\y=1\end{matrix}\right.\left(nhận\right)\)

 

DT
29 tháng 6 2024

Hoặc bạn biện luận theo cách sau:

\(\left(x-2y\right)^2+\left(y-1\right)^2< 1\) (1)

Nhận thấy: \(\left(x-2y\right)^2\ge0,\left(y-1\right)^2\ge0\forall x,y\inℤ\) (2)

(1);(2) \(\Rightarrow0\le\left(x-2y\right)^2,\left(y-1\right)^2< 1\)

\(\Rightarrow-1< x-2y,y-1< 1\)

Mà: x-2y và y-1 đều là các số nguyên

Do đó nên: x-2y=y-1=0

 

29 tháng 6 2024

Olm chào em, cảm ơn em đã phản hồi đến  Olm. Vấn đề em hỏi Olm xin giải đáp như sau:

Em khẳng định mặt trời mọc ở đằng đông, đây cũng là chân lí, là thực tế không thể thay đổi trong bất cứ thời đại nào. Nên  việc ngày mai ,mặt trời mọc ở đằng  tây là không thể xảy ra.

Vậy biến cố: Ngày mai, mặt trời mọc ở đằng tây là biến cố không thể em nhé!

 

10 tháng 10 2024

Sài rồi mặt trời ở phía tây

 

DT
29 tháng 6 2024

Bạn ơi đề thiếu hình vẽ nhé.

AH
Akai Haruma
Giáo viên
29 tháng 6 2024

Đề không rõ ràng. Bạn xem lại đề nhé.

AH
Akai Haruma
Giáo viên
29 tháng 6 2024

Bài 1:

Thay $3=x^2+xy+y^2$ vào PT(2) thì:

$2x^3=(x+y)(x^2+xy+y^2-2xy)$

$\Leftrightarrow 2x^3=(x+y)(x^2-xy+y^2)=x^3+y^3$

$\Leftrightarrow x^3=y^3\Leftrightarrow x=y$. 

Thay vào PT(1) thì: $3x^2=3\Leftrightarrow x^2=1\Leftrightarrow x=\pm 1$

$\Rightarrow y=\pm 1$ (tương ứng)

Vậy HPT có nghiệm $(x,y)=(\pm 1, \pm 1)$

AH
Akai Haruma
Giáo viên
29 tháng 6 2024

Bài 2:

Thay $2=xy(x+y)$ vào PT(2) thì:

$x^3+y^3+3xy(x+y)=8y^3$

$\Leftrightarrow (x+y)^3=(2y)^3$

$\Leftrightarrow x+y=2y\Leftrightarrow x=y$. 

Thay vào PT(1): $x^2.2x=2$

$\Leftrightarrow 2x^3=2\Leftrightarrow x^3=1\Leftrightarrow x=1$.

$\Rightarrow y=x=1$

Vậy HPT có nghiệm $(x,y)=(1,1)$

29 tháng 6 2024

Yêu cầu chứng minh của đề chưa rõ bạn nhé!

 

Bài 1:

e: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{16}{x^2-1}\)

=>\(\dfrac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{16}{\left(x-1\right)\left(x+1\right)}\)

=>\(\left(x+1\right)^2-\left(x-1\right)^2=16\)

=>\(\left(x+1+x-1\right)\left(x+1-x+1\right)=16\)

=>4x=16

=>x=4(nhận)

f: ĐKXĐ: \(x\notin\left\{1-1\right\}\)

\(\left(1-\dfrac{x-1}{x+1}\right)\left(x+2\right)=\dfrac{x+1}{x-1}+\dfrac{x-1}{x+1}\)

=>\(\dfrac{x+1-x+1}{\left(x+1\right)}\left(x+2\right)=\dfrac{\left(x+1\right)^2+\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\)

=>\(\dfrac{2\left(x+2\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{2x^2+2}{\left(x-1\right)\left(x+1\right)}\)

=>\(2\left(x+2\right)\left(x-1\right)=2\left(x^2+1\right)\)

=>\(\left(x+2\right)\left(x-1\right)=x^2+1\)

=>\(x^2+x-2=x^2+1\)

=>x-2=1

=>x=3(nhận)

a: ĐKXĐ: \(x\notin\left\{0;-1;4\right\}\)

\(\dfrac{11}{x}=\dfrac{9}{x+1}+\dfrac{2}{x-4}\)

=>\(\dfrac{11}{x}=\dfrac{9\left(x-4\right)+2\left(x+1\right)}{\left(x+1\right)\left(x-4\right)}\)

=>\(\dfrac{11}{x}=\dfrac{11x-34}{x^2-3x-4}\)

=>\(11\left(x^2-3x-4\right)=x\left(11x-34\right)\)

=>\(11x^2-33x-44=11x^2-34x\)

=>-33x-44=-34x

=>-33x+34x=44

=>x=44(nhận)

b: ĐKXĐ: \(x\ne4\)

\(\dfrac{14}{3x-12}-\dfrac{2+x}{x-4}=\dfrac{3}{8-2x}-\dfrac{5}{6}\)

=>\(\dfrac{14}{3\left(x-4\right)}-\dfrac{x+2}{x-4}=\dfrac{-3}{2\left(x-4\right)}-\dfrac{5}{6}\)

=>\(\dfrac{28}{6\left(x-4\right)}-\dfrac{6\left(x+2\right)}{6\left(x-4\right)}=\dfrac{-9}{6\left(x-4\right)}-\dfrac{5\left(x-4\right)}{6\left(x-4\right)}\)

=>28-6(x+2)=-9-5(x-4)

=>28-6x-12=-9-5x+20

=>-6x+16=-5x+11

=>-6x+5x=11-16

=>-x=-5

=>x=5(nhận)

c: ĐKXĐ: \(x\notin\left\{\dfrac{1}{3};-\dfrac{1}{3}\right\}\)

\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\)

=>\(\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}=\dfrac{\left(1-3x\right)^2-\left(1+3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}\)

=>\(\left(1-3x\right)^2-\left(1+3x\right)^2=12\)

=>\(9x^2-6x+1-9x^2-6x-1=12\)

=>-12x=12

=>x=-1(nhận)

d: ĐKXĐ: \(x\notin\left\{0;5;-5\right\}\)

\(\dfrac{x+5}{x^2-5x}-\dfrac{x+25}{2x^2-50}=\dfrac{x-5}{2x^2+10x}\)

=>\(\dfrac{x+5}{x\left(x-5\right)}-\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{2x\left(x+5\right)}\)

=>\(\dfrac{2\left(x+5\right)^2}{2x\left(x-5\right)\left(x+5\right)}-\dfrac{x\left(x+25\right)}{2x\left(x-5\right)\left(x+5\right)}=\dfrac{\left(x-5\right)^2}{2x\left(x+5\right)\left(x-5\right)}\)

=>\(2\left(x+5\right)^2-x\left(x+25\right)=\left(x-5\right)^2\)

=>\(2x^2+20x+50-x^2-25x=x^2-10x+25\)

=>-5x+50=-10x+25

=>5x=-25

=>x=-5(loại)

Bài 2:

a: ĐKXĐ: \(x\notin\left\{2;5\right\}\)

\(\dfrac{6x+1}{x^2-7x+10}+\dfrac{5}{x-2}=\dfrac{3}{x-5}\)

=>\(\dfrac{6x+1}{\left(x-2\right)\left(x-5\right)}+\dfrac{5\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}=\dfrac{3\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}\)

=>6x+1+5x-25=3x-6

=>11x-24=3x-6

=>8x=18

=>x=9/4(nhận)

b: ĐKXĐ: \(x\notin\left\{0;2;-2\right\}\)

\(\dfrac{2}{x^2-4}-\dfrac{x-1}{x\left(x-2\right)}+\dfrac{x-4}{x\left(x+2\right)}=0\)

=>\(\dfrac{2x}{x\left(x-2\right)\left(x+2\right)}-\dfrac{\left(x-1\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-4\right)\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}=0\)

=>2x-(x-1)(x+2)+(x-4)(x-2)=0

=>\(2x-\left(x^2+x-2\right)+x^2-6x+8=0\)

=>\(x^2-4x+8-x^2-x+2=0\)

=>-5x+10=0

=>x=2(loại)

c: ĐKXĐ: \(x\notin\left\{3;-1\right\}\)

\(\dfrac{1}{3-x}-\dfrac{1}{x+1}=\dfrac{x}{x-3}-\dfrac{\left(x-1\right)^2}{x^2-2x-3}\)

=>\(\dfrac{-1}{x-3}-\dfrac{1}{x+1}-\dfrac{x}{x-3}+\dfrac{\left(x-1\right)^2}{\left(x-3\right)\left(x+1\right)}=0\)

=>\(\dfrac{\left(-1-x\right)\left(x+1\right)-x+3}{\left(x-3\right)\left(x+1\right)}+\dfrac{\left(x-1\right)^2}{\left(x-3\right)\left(x+1\right)}=0\)

=>-(x+1)^2-x+3+(x-1)2=0

=>\(-x^2-2x-1-x+3+x^2-2x+1=0\)

=>-5x+3=0

=>\(x=\dfrac{3}{5}\left(nhận\right)\)

d: ĐKXĐ: \(x\notin\left\{2;-3\right\}\)

\(\dfrac{1}{x-2}-\dfrac{6}{x+3}=\dfrac{5}{6-x^2-x}\)

=>\(\dfrac{x+3-6\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}=\dfrac{-5}{\left(x+3\right)\left(x-2\right)}\)

=>x+3-6(x-2)=-5

=>x+3-6x+12+5=0

=>-5x+20=0

=>x=4(nhận)

e: ĐKXĐ: x<>-2

\(\dfrac{2}{x+2}-\dfrac{2x^2+16}{x^3+8}=\dfrac{5}{x^2-2x+4}\)

=>\(\dfrac{2}{x+2}-\dfrac{2x^2+16}{\left(x+2\right)\left(x^2-2x+4\right)}-\dfrac{5}{x^2-2x+4}=0\)

=>\(\dfrac{2\left(x^2-2x+4\right)-2x^2-16-5x-10}{\left(x+2\right)\left(x^2-2x+4\right)}=0\)

=>\(2x^2-4x+8-2x^2-5x-26=0\)

=>-9x-18=0

=>x=-2(loại)

f: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

\(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{2\left(x+2\right)^2}{x^6-1}\)

=>\(\dfrac{\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(x^2-x+1\right)}=\dfrac{2\left(x+2\right)^2}{\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)}\)

=>\(\dfrac{2}{\left(x^2+x+1\right)\left(x^2-x+1\right)}=\dfrac{2\left(x+2\right)^2}{\left(x^2-1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)}\)

=>2(x^2-1)=2(x+2)^2

=>\(x^2-1=\left(x+2\right)^2\)

=>\(x^2+4x+4-x^2+1=0\)

=>4x+5=0

=>\(x=-\dfrac{5}{4}\left(nhận\right)\)

Bài 3:

 

c:

=>\(\dfrac{x}{x-1}+\dfrac{x}{x-2}+\dfrac{x}{x-3}=\dfrac{3x-12}{x-6}\)

=>

ĐKXĐ: \(x\notin\left\{1;2;\dfrac{3\pm\sqrt{7}}{2}\right\}\)

 \(\dfrac{4}{x^2-3x+2}-\dfrac{3}{2x^2-6x+1}+1=0\)

=>\(\dfrac{4\left(2x^2-6x+1\right)-3\left(x^2-3x+2\right)}{\left(x^2-3x+2\right)\left(2x^2-6x+1\right)}=-1\)

=>\(8x^2-24x+4-3x^2+9x-6=-\left(x^2-3x+2\right)\left[2\cdot\left(x^2-3x\right)+1\right]\)

=>\(5x^2-15x-2=-\left[2\left(x^2-3x\right)^2+5\left(x^2-3x\right)+2\right]\)

=>\(5\left(x^2-3x\right)-2+2\left(x^2-3x\right)^2+5\left(x^2-3x\right)+2=0\)

=>\(2\left(x^2-3x\right)^2+10\left(x^2-3x\right)=0\)

=>\(\left(x^2-3x\right)^2+5\left(x^2-3x\right)=0\)

=>\(\left(x^2-3x\right)\left(x^2-3x+5\right)=0\)

mà \(x^2-3x+5=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}>=\dfrac{11}{4}>0\forall x\)

nên x(x-3)=0

=>\(\left[{}\begin{matrix}x=0\left(nhận\right)\\x=3\left(nhận\right)\end{matrix}\right.\)

a:

ĐKXĐ: \(x\notin\left\{8;9;10;11\right\}\)

 \(\dfrac{8}{x-8}+\dfrac{11}{x-11}=\dfrac{9}{x-9}+\dfrac{10}{x-10}\)

=>\(\left(\dfrac{8}{x-8}+1\right)+\left(\dfrac{11}{x-11}+1\right)=\left(\dfrac{9}{x-9}+1\right)+\left(\dfrac{10}{x-10}+1\right)\)

=>\(\dfrac{x}{x-8}+\dfrac{x}{x-11}-\dfrac{x}{x-9}-\dfrac{x}{x-10}=0\)

=>\(x\left(\dfrac{1}{x-8}+\dfrac{1}{x-11}-\dfrac{1}{x-9}-\dfrac{1}{x-10}\right)=0\)

=>x=0(nhận)

b:

ĐKXĐ: \(x\notin\left\{3;4;5;6\right\}\)

 \(\dfrac{x}{x-3}-\dfrac{x}{x-5}=\dfrac{x}{x-4}-\dfrac{x}{x-6}\)

=>\(\dfrac{x\left(x-5\right)-x\left(x-3\right)}{\left(x-3\right)\left(x-5\right)}=\dfrac{x\left(x-6\right)-x\left(x-4\right)}{\left(x-4\right)\left(x-6\right)}\)

=>\(\dfrac{-2x}{\left(x-3\right)\left(x-5\right)}=\dfrac{-2x}{\left(x-4\right)\left(x-6\right)}\)

=>\(x\left(\dfrac{1}{\left(x-3\right)\left(x-5\right)}-\dfrac{1}{\left(x-4\right)\left(x-6\right)}\right)=0\)

=>\(x\cdot\dfrac{\left(x-4\right)\left(x-6\right)-\left(x-3\right)\left(x-5\right)}{\left(x-3\right)\left(x-5\right)\left(x-4\right)\left(x-6\right)}=0\)

=>\(x\left(x^2-10x+24-x^2+8x-15\right)=0\)

=>x(-2x+9)=0

=>\(\left[{}\begin{matrix}x=0\left(nhận\right)\\x=\dfrac{9}{2}\left(nhận\right)\end{matrix}\right.\)

a: AH=1,5dm=15cm

\(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\)

=>\(\dfrac{1}{2}\cdot15\cdot BC=60\)

=>\(BC\cdot7,5=60\)

=>\(BC=\dfrac{60}{7,5}=8\left(cm\right)\)

b: \(\dfrac{BH}{HC}=\dfrac{1}{2}\)

=>\(\dfrac{BH}{BC}=\dfrac{1}{3}\)

=>\(S_{ABH}=\dfrac{1}{3}\cdot S_{ABC}\)

=>\(S_{ABC}=3\cdot S_{ABH}=3\cdot10=30\left(cm^2\right)\)

c: DB=DC

=>D là trung điểm của BC

=>\(S_{ABD}=S_{ADC}=\dfrac{1}{2}\cdot S_{ABC}=60\left(cm^2\right)\)

CM=ME=EA

mà CM+ME+EA=CA

nên \(CM=ME=EA=\dfrac{1}{3}CA\)

=>\(S_{CDM}=\dfrac{1}{3}\cdot S_{ADC}=20\left(cm^2\right)\)

Vì CM=ME

nên M là trung điểm của CE

=>\(S_{DCE}=2\cdot S_{DCM}=40\left(cm^2\right)\)

\(S_{DCE}+S_{ABDE}=S_{ABC}\)

=>\(S_{ABDE}+40=120\)

=>\(S_{ABDE}=80\left(cm^2\right)\)

 

DT
29 tháng 6 2024

a) \(34,2=34\dfrac{2}{10}=34\dfrac{1}{5}\\ 123,027=123\dfrac{27}{1000}\\ 67,157=67\dfrac{157}{1000}\)

b) \(78,095=78\dfrac{95}{1000}=78\dfrac{19}{200}\\ 2002,028=2002\dfrac{28}{1000}=2002\dfrac{7}{250}\\ 199,0023=199\dfrac{23}{10000}\)