K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2023

\(\left\{{}\begin{matrix}\widehat{M}=120^o\\\widehat{N}=30^o\end{matrix}\right.\) \(\Rightarrow\widehat{M}>\widehat{N}\)

25 tháng 8 2023

a) \(x\left(2x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=-7\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{7}{2}\end{matrix}\right.\)

b) \(x\left(2x+7\right)>0\)

\(TH1:\left\{{}\begin{matrix}x>0\\2x+7>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x>-\dfrac{7}{2}\end{matrix}\right.\) \(\Leftrightarrow x>0\)

\(TH2:\left\{{}\begin{matrix}x< 0\\2x+7< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x< 0\\x< -\dfrac{7}{2}\end{matrix}\right.\) \(\Leftrightarrow x< -\dfrac{7}{2}\)

Vậy \(x>0\) hay \(x< -\dfrac{7}{2}\)

c) \(x\left(2x+7\right)< 0\)

\(TH1:\left\{{}\begin{matrix}x>0\\2x+7< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x< -\dfrac{7}{2}\end{matrix}\right.\) (Vô lý nên loại)

\(TH2:\left\{{}\begin{matrix}x< 0\\2x+7>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x< 0\\x>-\dfrac{7}{2}\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{7}{2}< x< 0\)

Vậy \(-\dfrac{7}{2}< x< 0\)

25 tháng 8 2023

Để chứng minh rằng ba điểm B, A và C thẳng hàng, chúng ta cần sử dụng các thông tin đã cho và các quy tắc trong hình học.

Gọi G là giao điểm của đường thẳng FA và đường thẳng CE.

Vì tam giác EFM vuông tại E, nên ta có: ∠EMF = 90° Vì FA là phân giác của ∠EMF, nên ta có: ∠FAG = ∠GEM Vì CE là tia đối của tia EF,

nên ta có: ∠GEC = ∠FEM Vì CE = MB, nên ta có: ∠ECG = ∠MBC

Vì ∠GEC = ∠FEM và ∠ECG = ∠MBC, nên ta có: ∠FEM = ∠MBC Vì ∠FAG = ∠GEM và ∠FEM = ∠MBC,

nên ta có: ∠FAG = ∠MBC

Vậy ta có hai góc cùng nhìn trên cùng một đường thẳng, nên ta có: B, A, C thẳng hàng.

Vậy ta đã chứng minh được rằng ba điểm B, A và C thẳng hàng.

25 tháng 8 2023

a) \(\dfrac{x-4}{15}=\dfrac{5}{3}\)

\(\Leftrightarrow x-4=15.\dfrac{5}{3}\)

\(\Leftrightarrow x-4=25\)

\(\Leftrightarrow x=29\) thỏa \(x\inℤ\)

b) \(\dfrac{x}{4}=\dfrac{18}{x+1}\left(x\ne-1\right)\)

\(\Leftrightarrow x\left(x+1\right)=18.4\)

\(\Leftrightarrow x\left(x+1\right)=72\)

vì \(72=8.9=\left(-8\right).\left(-9\right)\)

\(\Leftrightarrow x\in\left\{8;-9\right\}\left(x\inℤ\right)\)

c) \(2x+3⋮x+4\) \(\left(x\ne-4;x\inℤ\right)\)

\(\Leftrightarrow2x+3-2\left(x+4\right)⋮x+4\)

\(\Leftrightarrow2x+3-2x-8⋮x+4\)

\(\Leftrightarrow-5⋮x+4\)

\(\Leftrightarrow x+4\in\left\{-1;1;-5;5\right\}\)

\(\Leftrightarrow x\in\left\{-5;-3;-9;1\right\}\)

26 tháng 8 2023

a) \(1,28=\dfrac{128}{100}=\dfrac{32}{25}\)

b) \(-3,12=-\dfrac{312}{100}=-\dfrac{78}{25}\)

25 tháng 8 2023

(3x + 52) ⋮ (x+7)

=> 3x + 52 - 3(x+7) ⋮ (x+7)

=> 3x + 52 - 3x - 21 ⋮ (x+7)

=> (3x - 3x) + (52 - 21) ⋮ (x+7)

=> 0 + 31 ⋮ (x+7)

=> 31 ⋮ (x+7)

=> x+7 ϵ Ư(31)

Ư(31) = {1;31;-31;-1}

=> x ϵ  {-6; 24 ; -38; -8}

25 tháng 8 2023

\(5^{12}:5^{x+2}=\left(-5\right)^3.\left(-5\right)^7\)

\(\Rightarrow5^{12-x-2}=\left(-5\right)^{3+7}\)

\(\Rightarrow5^{10-x}=\left(-5\right)^{10}\)

\(\Rightarrow5^{10-x}=5^{10}\)

\(\Rightarrow10-x=10\)

\(\Rightarrow x=0\)

25 tháng 8 2023

\(\Rightarrow\dfrac{z}{5}=\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z-x+y}{5-3+4}=1\)

\(\Rightarrow x=3;y=4;z=5\)

25 tháng 8 2023

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{z-x+y}{3-4+5}=\dfrac{6}{4}=\dfrac{3}{2}\)

\(\Rightarrow x=\dfrac{3}{2}\cdot3=4,5\)

\(y=\dfrac{3}{2}\cdot4=6\)

\(z=\dfrac{3}{2}\cdot5=7,5\)