Tính S = \(\sqrt{\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{\frac{1}{1^2}+\frac{1}{99^2}+\frac{1}{100^2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có: \(\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\)
\(\Leftrightarrow\left(\sqrt{\frac{a+b}{2}}\right)^2\ge\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)^2\)
\(\Leftrightarrow\frac{a+b}{2}\ge\frac{a+2\sqrt{ab}+b}{4}\)
\(\Leftrightarrow\frac{a+b}{2}-\frac{a+b}{4}\ge\frac{2\sqrt{ab}}{4}\)
\(\Leftrightarrow\frac{a+b}{4}\ge\frac{\sqrt{ab}}{2}\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Rightarrow\left(a-b\right)^2\ge0\)luôn đúng (áp dụng Cauchy ngược)
=> đpcm
Áp dụng BĐT Cosi cho 2 số không âm ta có: \(a+b\ge2\sqrt{ab}\left(1\right)\)
Cộng 2 vế của (1) với a+b được
\(2\left(a+b\right)\ge a+2\sqrt{ab}+b\Leftrightarrow2\left(a+b\right)\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)(2)
Chia 2 vế của (2) cho 4 được: \(\frac{a+b}{2}\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}\)
\(\Leftrightarrow\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\left(đpcm\right)\)
\(\sqrt{7}-\sqrt{3}=\frac{4}{\sqrt{7}+\sqrt{3}}< \frac{4}{\sqrt{6}+\sqrt{2}}=\sqrt{6}-\sqrt{2}.\)
\(\sqrt{x^2-9}-5\sqrt{x+3}=0\Leftrightarrow\sqrt{x+3}\left(\sqrt{x-3}-5\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x+3}=0\\\sqrt{x-3}-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=28\end{cases}}}\)
Dựa vào hình vẽ, ta tính được
AB=52−−√AC=160−−−√BC=10AB=52AC=160BC=10
Lần lượt gán:
52−−√52 ShiftShift STOSTO AA
160−−−√ShiftSTOB160ShiftSTOB
10ShiftSTOC10ShiftSTOC
(A+B+C):2ShiftSTOD(A+B+C):2ShiftSTOD
Sử dụng công thức herong
Bấm D(D−A)(D−B)(D−C)−−−−−−−−−−−−−−−−−−−−−√D(D−A)(D−B)(D−C)
Kết quả ra 36
Sử dụng trên Fx 570ES-Plus
Dựa vào hình vẽ, ta tính được
AB=52−−√AC=160−−−√BC=10AB=52AC=160BC=10
Lần lượt gán:
52−−√52 ShiftShiftSTOSTO AA
160−−−√ShiftSTOB160ShiftSTOB
10ShiftSTOC10ShiftSTOC
(A+B+C):2ShiftSTOD(A+B+C):2ShiftSTOD
Sử dụng công thức herong
Bấm D(D−A)(D−B)(D−C)−−−−−−−−−−−−−−−−−−−−−√D(D−A)(D−B)(D−C)
Kết quả ra 36
\(A=\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\right)\left[\left(\frac{1}{\sqrt{a}-\sqrt{b}}-\frac{3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\right):\frac{a-b}{a+\sqrt{ab}+b}\right]\)
\(A=\left[\frac{a-\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\right].\left[\frac{a+b+\sqrt{ab}-3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}.\frac{a+\sqrt{ab}+b}{a-b}\right]\)
\(A=\left[\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\right].\left[\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}.\frac{1}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right]\)
\(A=\frac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}.\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{1}{a-\sqrt{ab}+b}\)
Điều kiện : a, b\(\ge0\)
Ta có:
\(\sqrt{\frac{1}{1^2}+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\frac{n^4+2n^3+3n^2+2n+1}{n^2.\left(n+1\right)^2}}\)
\(=\sqrt{\frac{\left(n^2+n+1\right)^2}{n^2\left(n+1\right)^2}}=\frac{n^2+n+1}{n\left(N+1\right)}=1+\frac{1}{n\left(n+1\right)}\)
\(=1+\frac{1}{n}-\frac{1}{n+1}\)
Thế vào bài toán ta được
\(S=1+1+...+1+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=98+\frac{1}{2}-\frac{1}{100}=\frac{9849}{100}\)