Điền vào ...
â)nếu c vuông goc và ... thi c song song với b
b)nếu a song song với b và ... thì c vuông góc với a
c)nếu a song song với c vaf .. thì a song song với b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng các hệ số của một đa thức P(x) bất kì bằng giá trị cua đa thức đó tại x=1.
Vậy tổng các hệ số của đa thức:
\(P\left(x\right)=\left(3-4x+x^2\right)^{2006}.\left(3+4x+x^2\right)^{2007}\)
Bằng \(P\left(1\right)=\left(3-4+1\right)^{2006}.\left(3+4+1\right)^{2007}=0\)
\(2^x+2^y=2^{x+y}\)
\(\Leftrightarrow2^x.2^y-2^x=2^y\)
\(\Leftrightarrow2^x\left(2^y-1\right)=2^y\)
TH1 :
\(\Rightarrow\orbr{\begin{cases}2^x=2^y\\2^x-1=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=y\\2^y=2\end{cases}\Leftrightarrow}y=1=x}\)
TH2 :
\(\Rightarrow\orbr{\begin{cases}2x=1\\2^y-1=2^y\end{cases}\left(l\right)}\)
Lời giải :
\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
\(\Leftrightarrow\left(x-1\right)^{x+2}-\left(x-1\right)^{x+4}=0\)
\(\Leftrightarrow\left(x-1\right)^{x+2}-\left(x-1\right)^{x+2}\cdot\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\left[1-\left(x-1\right)^2\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-1=\pm1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\left\{2;0\right\}\end{cases}}\)
Vậy....
\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^2-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^2=1\end{cases}}\Leftrightarrow x\in\left\{0;1;2\right\}\)
\(a,\)\(\frac{x^7}{81}=27\)
\(\Rightarrow x^7=3^3.3^4=3^7\)
\(\Rightarrow x=3\)
\(b,\left(x^2\right)^4=\frac{x^{18}}{x^{10}}\)
\(\Rightarrow x^{18}=x^{10}.x^6\)
\(\Rightarrow x^{18}-x^{16}=0\)
\(\Rightarrow x^{16}\left(x^2-1\right)=0\)
\(\Rightarrow x^{16}\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x=\pm1\end{cases}}\)
\(\frac{x^7}{81}=27\Rightarrow x^7=27\cdot81=2187\)
\(x^7=2187\Leftrightarrow x^7=3^7\Rightarrow x=3\)
Vậy x=3
ĐK \(x\ne0,x\ne-1\)
Ta có \(\frac{x^2-4+\frac{1}{x^2}}{x+\frac{1}{x}}+x^2+3+\frac{1}{x^2}=4\)
Đặt \(x+\frac{1}{x}=a\)=> \(x^2+\frac{1}{x^2}=a^2-2\)
=> \(\frac{a^2-6}{a}+a^2-3=0\)
<=> \(a^3+a^2-3a-6=0\)=> \(\left(a-2\right)\left(a^2+3a+3\right)=0\)
=> a=2
=> \(x+\frac{1}{x}=2\)=> \(x^2+1=2x\)=> x=1 (thỏa mãn ĐKXĐ)
Vậy \(x=1\)
\(ĐKXĐ:x\ne0\)
\(PT\Leftrightarrow\frac{x^7-x^6+4x^5-4x^4+4x^3+x^2+x}{x^3\left(x^2+1\right)}=4\)
\(\Leftrightarrow\frac{x^6+x^5-4x^3+x+1+4x^2\left(x^2+1\right)}{x^2\left(x^2+1\right)}=4\)
\(\Leftrightarrow\frac{x^6+x^5-4x^3+x+1}{x^2\left(x^2+1\right)}=0\)
\(\Leftrightarrow x^6+x^5-4x^3+x+1=0\)
\(\Leftrightarrow x^6-x^5+2x^5-2x^4+2x^4-2x^3-2x^3+2x^2-2x^2+2x-x+1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^5+2x^4+2x^3-2x^2-2x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^4+3x^3+5x^2+3x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^4+3x^3+5x^2+3x+1\right)=0\)
Vì \(x^4+3x^3+5x^2+3x+1\ne0\)nên
\(x-1=0\Leftrightarrow x=1\)
Vậy tập nghiệm của pt là \(S=\left\{1\right\}\)
a) Ta có: |2x - 1,5| \(\ge\)0 \(\forall\)x
=> 5,5 - |2x - 1,5| \(\le\)5,5 \(\forall\)x
hay D \(\le\)5,5 \(\forall\)x
Dấu "=" xảy ra khi 2x - 1,5 = 0 <=> 2x = 1,5 <=> x = 0,75
Vậy Max D = 5,5 tại x = 0,75
b) Ta có: |10,2 - 3x| \(\ge\) 0 \(\forall\)x => -|10,2 - 3x| \(\le\)0 \(\forall\)x
=> -|10,2 - 3x| - 14 \(\le\) -14 \(\forall\)x
hay E \(\le\) -14 \(\forall\)x
Dấu "=" xảy ra khi: 10,2 - 3x = 0 <=> 3x = 10,2 <=> x = 3,4
Vậy Emax = -14 tại x = 3,4
c) Ta có: |5x - 2| \(\ge\) 0 \(\forall\)x => -|5x - 2| \(\le\) 0 \(\forall\)x
|3y + 12| \(\ge\) 0 \(\forall\)y => -|3y + 12| \(\le\) 0 \(\forall\)y
=> 4 - |5x - 2| - |3y + 12| \(\le\)4 \(\forall\)x, y
hay F \(\le\)4 \(\forall\)x,y
Dấu "=" xảy ra khi: \(\hept{\begin{cases}5x-2=0\\3y+12=0\end{cases}}\) <=> \(\hept{\begin{cases}5x=2\\3y=-12\end{cases}}\) <=> \(\hept{\begin{cases}x=0,4\\y=-4\end{cases}}\)
Vậy Fmax = 4 tại x = 0,4 và y = -4
\(\sqrt{\frac{\left(-5\right)^2}{7}}=\frac{\sqrt{\left(-5\right)^2}}{\sqrt{7}}=\frac{|5|}{\sqrt{7}}=\frac{5\sqrt{7}}{7}\)
\(\frac{-\sqrt{\left(-5\right)^2}}{-\sqrt{49}}=\frac{\sqrt{\left(-5\right)^2}}{\sqrt{49}}=\frac{|5|}{|7|}=\frac{5}{7}\)
\(\frac{5\sqrt{7}}{7}>\frac{5}{7}\leftrightarrow\sqrt{\frac{\left(-5\right)^2}{7}}>\frac{-\sqrt{\left(-5\right)^2}}{-\sqrt{49}}\)
Điền vào ...như này
a)Nếu c vuông góc( với a) và b vuông góc với a thì c song song với b
b)Nếu a song song với b và c vuông góc với b thì c vuông góc với a
c)Nếu a song song với c và c song song với b thì a song song với b
Câu a nó hơi lạ
Học tốt!!
#Minkk!