Giải các hệ phương trình sau:
a) \(\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=8\\x\left(x+1\right)+y\left(y+1\right)+xy=17\end{cases}}\)
b) \(\hept{\begin{cases}x^2-y^2=5\\1-2xy^2-3x+3x^2=\left(x-y\right)\left(5+xy\right)\end{cases}}\)
c) \(\hept{\begin{cases}\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\\x^2-4\left(y+z\right)+z^2+8=0\end{cases}}\)(không biết đề có nhầm không mà phương trình này có tới 3 ẩn \(x,y,z\)luôn)
a) \(\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=8\\x\left(x+1\right)+y\left(y+1\right)+xy=17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y+xy=7\\x^2+y^2+x+y+xy=17\end{cases}}\)
Dat \(\hept{\begin{cases}xy=P\\x+y=S\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}S+P=7\\S^2+S-P=17\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}P=7-S\\S^2+S-\left(7-S\right)=17\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}P=7-S\\S^2+2S=24\end{cases}}\)
\(\hept{\begin{cases}S=-6\\P=13\\S=4;P=3\end{cases}}\)
b)