Tìm giá trị lớn nhất của biểu thức sau :
M=x2+2xy-4y2+2x+10y-8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N P Q G
a) Tứ giác MNPQ là hình bình hành
Chứng minh
Hai trung tuyến BM, CN căt nhau tại G
=> G là trọng tâm tam giác ABC
=> BP=PG=MG, QC=QG=NG
=> G là trung điểm NQ và G là trung điểm MP mà NQ, MP là hai dduownff chéo tứ giác MNPQ
=> MNPQ là hình bình hành
b) Tam giác ABC cân tại A'
=> AG vuông BC (1)
Q là trung điểm GC, P là trung điểm GB
=> PQ là đường trung bình tam giác ABC
=> PQ //BC (2)
NP là đường trung bình tam giác ABG
=> NP//AG (3)
(1), (2), (3) => PQ vuông NP
=> NMQP là hình chữ nhật
câu b mk có cách khác nè
t.g BNC= t.g CMB (c-g-c)
=>CN=BM
ta có NQ=1/2 CN
MP= 1/2 BM
=> NQ=MP
lại có MNQP là hbh
=> MNQP là hcn
f(x) = ( x2010 + x20 + x19 + x + 1 ) : ( 1 - x2 )
f(x) = ( x2010 + x20 + x19 + x + 1 ) : ( 1 - x ) ( 1 + x )
Áp dụng định lý Bezout ta có 2 đa thức dư :
+) f(1) = 12010 + 120 + 119 + 1 + 1 = 5
+) f(-1) = (-1)2010 + (-1)20 + (-1)19 - 1 + 1 = 1
Vậy có 2 đa thức dư là f(1) = 5 và f(-1) = 1
B=\(\frac{\left(x^2+4x+3\right)\cdot\left(x^2+12x+35\right)+2015}{x^2+8x+11}=\frac{\left(x+2\right)^2+1\cdot\left(x+6\right)^2-1+2015}{\left(x+4\right)^2-5}\)
\(4x^2+3y^2-4x+30y+78\)
\(=\left(2x\right)^2-2\cdot2x\cdot1+1^2+3y^2+30y+75+2\)
\(=\left(2x-1\right)^2+3\left(y^2+2\cdot y\cdot5+5^2\right)+2\)
\(=\left(2x-1\right)^2+3\left(y+5\right)^2+2\ge2>0\)
=> đẳng thức ko thể bằng 0
=> đpcm
\(4x^2+3y^2-4x+30y+78=0\)
\(=4x^2-4x+1+3y^2+30y+75+2\)
\(=(4x^2-4x+1)+3(y^2+10y+25)+2\)
\(=(2x-1)^2+3(y+5)^2+2>0\)với mọi x
=> không có x,y nào thỏa mãn
P/S : Bài này chứng minh hay sao?
Trần Việt Hoàng !!! Em xem lại đề nhé! Cô nghĩ là M= - x^2+2xy-4y^2+2x+10y-8