K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2019

\(3A=3\left(-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\right)\)

\(=-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{49}}-\frac{1}{50}\)

=> \(3A+A=\left(-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{49}}-\frac{1}{3^{50}}\right)+\left(-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\right)\)

\(4A=-1-\frac{1}{3^{51}}\)

\(A=-\frac{1}{4}\left(1+\frac{1}{5^{51}}\right)=-\frac{5^{51}+1}{4.5^{51}}\)

4 tháng 10 2019

a

) x O y M A B d

b

A O B m C n D M

c

A B C d 1 2 d D

d

A B C

ĐÃ VẼ LẠI 2 LẦN.LẦN NÀY LÀ LẦN 3

=> CUỘC ĐỜI ĐEN NHỌ CỦA COOL KID :V

4 tháng 10 2019

a

\(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3\cdot21⋮7\)

b

\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\cdot55⋮11\)

4 tháng 10 2019

a)\(5^5-5^4+5^3\)

\(=5^3\left(5^2-5+1\right)\)

\(=5^3\times21⋮7\)

b) \(7^6+7^5-7^4\)

\(=7^4\left(7^2+7-1\right)\)

\(=7^4\times55⋮11\)

4 tháng 10 2019

a,b,c khác 0 nhé

4 tháng 10 2019

Ba số x,y,z tỉ lệ với ba số a,b,c

\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}\)(1)

Lại có: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{xa}{a^2}+\frac{yb}{b^2}+\frac{zc}{c^2}=\frac{xa+yb+zc}{a^2+b^2+c^2}=\frac{9\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=9\) (2)

Từ (1) và (2) ta có : \(\frac{x+y+z}{a+b+c}=9\)

\(\Rightarrow\left(x+y+z\right)=9\left(a+b+c\right)\) (đpcm)

4 tháng 10 2019

a

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)

b

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\)

c

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{5a^2}{5b^2}=\frac{3c^2}{3d^2}=\frac{5a^2+3c^2}{3d^2+5b^2}\)

4 tháng 10 2019

Cho hỏi ko phải cô giáo có dc làm ko:v

Xét \(x+y+z=0\) ta có:\(x+y=-z;y+z=-x;z+x=-y\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(-x\right)\left(-y\right)\left(-z\right)=-xyz\)

\(\Rightarrow P=\frac{-xyz}{xyz}=-1\)

Xét \(x+y+z\ne0\) ta có:

\(\frac{x+y-z}{z}=\frac{x-y+z}{y}=\frac{-x+y+z}{x}\)

\(\Rightarrow\frac{x+y}{z}-1=\frac{x+z}{y}-1=\frac{y+z}{x}-1\)

\(\Rightarrow\frac{x+y}{z}=\frac{x+z}{y}=\frac{z+y}{x}\) ( 1 )

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\left(1\right)=\frac{x+y+x+z+z+y}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Khi đó:

\(P=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\frac{x+y}{z}\cdot\frac{y+z}{x}\cdot\frac{z+x}{y}=2\cdot2\cdot2=8\)

4 tháng 10 2019

các bạn ơi làm hộ mình với

4 tháng 10 2019

Đặt

\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(VT:\frac{5a+3b}{5c+3d}=\frac{5bk+3b}{5dk+3d}=\frac{b\cdot\left(5k+3\right)}{d\cdot\left(5k+3\right)}=\frac{b}{d}\)

\(VP:\frac{2a-3b}{2c-3d}=\frac{2bk-3b}{2dk-3d}=\frac{b\cdot\left(2k-3\right)}{d\cdot\left(2k-3\right)}=\frac{b}{d}\)

Vì \(\frac{b}{d}=\frac{b}{5}\Rightarrow\frac{5a+3b}{5c+3d}=\frac{2a-3b}{2c-3d}\)

Vậy \(\frac{5a+3b}{5c+3d}=\frac{2a-3b}{2c-3d}\left(đpcm\right)\)

4 tháng 10 2019

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{5a}{5c}=\frac{3b}{3d}=\frac{2a}{2c}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có: 

\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{2a}{2c}=\frac{5a+3b}{5c+3d}=\frac{2a-3b}{2a-3c}\)

Vậy \(\frac{5a+3b}{5c+3d}=\frac{2a-3b}{2a-3c}\left(đpcm\right)\)

4 tháng 10 2019

Bạn ơi chứng minh nhỏ hơn hoặc bằng 0 nhé

\(=-y^{2018}-\left(x^2-x+1\right)\)

\(=-y^{2018}-\left(x+1\right)^2\)

Vì \(\hept{\begin{cases}-y^{2018}\le0;\forall x,y\\-\left(x+1\right)^2\le0;\forall x,y\end{cases}}\)

\(\Rightarrow-y^{2018}-\left(x+1\right)^2\le0;\forall x,y\left(đpcm\right)\)