Cho x, y, z thỏa mãn:
\(\frac{x}{2017}+\frac{y}{2018}+\frac{z}{2019}=1\)
\(\frac{2017}{x}+\frac{2018}{y}+\frac{2019}{z}=0\)
CMR:\(\frac{x^2}{2017^2}+\frac{y^2}{2018^2}+\frac{z^2}{2019^2}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(xy-2\right)\left(x^3-2x-6\right)=x^4y-2x^2y-6xy-2x^3+4x+12\)
\(\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)\)
\(=20x^5-5x^4+10x^3-4x^4+x^3-2x^2+8x^3-2x^2+4x-12x^2+3x-6\)
\(=20x^5-9x^4+19x^3-16x^2+7x-6\)
Giả thiết - kết luận
Chứng minh :
Diện tích tam giác ACB bằng \(\frac{CB\times AH}{2}\)
Diện tích hình thang ABCD bằng diện tích tam giác ACB nên :
\(\frac{CB\times AH}{2}=\frac{(AB+CD)\times AH}{2}\Leftrightarrow\frac{\left(a+b\right)\times h}{2}\) (Vì\(BD+CD=CB\Leftrightarrow AB+CD=CB\left(A\equiv D\right)\) )
\(\Rightarrow S_{\text{hình thang}}=\frac{\left(a+b\right)\cdot h}{2}\)
(S là diện tích, a là đáy lớn, b là đáy nhỏ, h là chiều cao \(\left(a,b,h\inℚ;a,b,c>0\right)\))
Okay !
9x2 - 9xy - 4y2
=( 9x2 - 4y2 ) - 9xy
= ( 3x - 2y ) ( 3x + 2y ) - 9xy
a,
+,Có CK vuông góc AB
BD vuông góc AB
=> CK // BD
=> CE //BD (*)
+,Có BH vuông góc AC
CD vuông góc AC
=> BH // CD
=> BE //CD (**)
Từ (*) (**) => BDCE là hình bình hành
b.
Có BDCE là hình bình hành (cmt)
=> đ/chéo BC giao đ/chéo DE tại trung điểm mỗi đường
mà M là trung điểm BC
=> M là trung điểm DE
c, Để DE đi qua A thì cần điều kiện tam giác ABC cân tại D.
Công thức tính diện tích hình chữ nhật là :
S = ( a + b ) x 2
=> (Chiều dài + chiều rộng ) x 2
a)\(\frac{3y}{4x}+\frac{5y}{4x}=\frac{3y+5y}{4x}=\frac{8y}{4x}=\frac{2y}{x}\)
b)\(\frac{x^2+1}{2x-4}-\frac{7x}{2-x}=\frac{x^2+1}{2\left(x-2\right)}-\frac{-7x}{x-2}\)
\(=\frac{x^2+1}{2\left(x-2\right)}-\frac{-7x\times2}{\left(x-2\right)\times2}=\frac{x^2+1+14x}{2\left(x-2\right)}\)