K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2019

\(\hept{\begin{cases}2x^2+xy-y^2-5x+y+2=0\\x^2+y^2+x+y-4=0\end{cases}}\)

\(\Leftrightarrow2x^2+xy-y^2-5x+y+2=x^2+y^2+x+y-4\)

\(\Leftrightarrow x^2+xy-y^2-5x+y+2=y^2+x+y-4\)

\(\Leftrightarrow x^2+xy-y^2-5x+y=y^2+x+y-4-2\)

\(\Leftrightarrow x^2+xy-y^2-5x+y=y^2+x+y-6\)

\(\Leftrightarrow x^2+xy-y^2+y=y^2+x+y-6+5x\)

\(\Leftrightarrow x^2+xy-y^2+y=y^2+6x+y-6\)

\(\Leftrightarrow x^2+xy-y^2=y^2+6x-6\)

\(\Leftrightarrow x^2+xy=y^2+6x-6+y^2\)

\(\Leftrightarrow x^2+xy=2y^2+6x-6\)

\(\Leftrightarrow x\left(x+y\right)=2\left(y^2+3x-3\right)\)

3 tháng 9 2018

Áp dụng BĐT AM-GM ta có:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3.\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)     

Do  \(a+b+c=1\)

nên   \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

Dấu "=" xảy ra khi  \(a=b=c=\frac{1}{3}\)

3 tháng 9 2018

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left[\left(x+2\right)\left(x+5\right)\right].\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt  \(t=x^2+7x+11\)

đến đây tự biến đổi

3 tháng 9 2018

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left[\left(x+2\right)\left(x+5\right)\right].\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt  \(t=x^2+7x+11\)

đến đây tự biến đổi

3 tháng 9 2018

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left[\left(x+2\right)\left(x+5\right)\right].\left[\left(x+3\right).\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt   \(x^2+7x+11=t\)

đến đây tự biến đổi

6 tháng 1 2018

hihi cho mình đi