Cho \(\frac{b+c+1}{a}\)=\(\frac{a+c+2}{b}\)=\(\frac{a+b-3}{c}\)=\(\frac{1}{a+b+c}\)(\(a,b,c\ne0;a+b+c\ne0\))
Tính M=(a-b)(b-c)(c-a)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\frac{2x}{7}=\frac{3y}{2}\Rightarrow4x=21y\)
\(x-y=17\Rightarrow x=17+y\)
\(\Rightarrow4\left(17+y\right)=21y\Rightarrow68+4y=21y\Rightarrow17y=68\Rightarrow y=4\)
\(\Rightarrow x=17+y=17+4=21\)
Em làm tương tự như link bên dưới chỉ thay m =2019.
Câu hỏi của Chi Chi - Toán lớp 8 - Học toán với OnlineMath
A B C D 80^o 40^o 1 2
GT \(\Delta ABC\)có
\(\widehat{A}\)= 80o
\(\widehat{B}\)= 40o
Tia phân giác của \(\widehat{C}\)cắt AD
KL \(\widehat{CDA}?\)\(\widehat{CDB}?\)
Giải:
Trong \(\Delta\)ABC có: \(\widehat{A}+\widehat{B}+\widehat{C}\)= 180o (Định lí)
=> \(\widehat{C}=180^o-\left(\widehat{A}+\widehat{B}\right)\)
Mà \(\widehat{A}=80^o\)(GT)
\(\widehat{B}=40^o\)(GT)
Ngoặc ''}'' 3 điều trên
=> \(\widehat{C}=180^o-\left(80^o+40^o\right)\)
=> \(\widehat{C}=180^o-120^o=60^o\)(1)
Vì CD là tia phân giác của \(\widehat{C}\)
=> \(\widehat{C_1}=\widehat{C_2}=\frac{\widehat{C}}{2}\)(Tính chất)
Mà \(\widehat{C}=60^o\)(Theo (1))
Ngoặc ''}'' 2 điều trên
=> \(\widehat{C_1}=\widehat{C_2}=\frac{60^o}{2}=30^o\)(2)
\(\widehat{CDB}\)là góc ngoài đỉnh D của \(\Delta CAD\)
=> \(\widehat{CDB}=\widehat{A}+\widehat{C_1}\)(Định lí)
Mà \(\widehat{A}=80^o\)(GT)
\(\widehat{C_1}=30^o\)(Theo (2))
Ngoặc ''}'' 3 điều trên
=> \(\widehat{CDB}=80^o+30^o=110^o\)
\(\widehat{CDA}\)là góc ngoài đỉnh D của \(\Delta CBD\)
=> \(\widehat{CDA}=\widehat{B}+\widehat{C_2}\)(Định lí)
Mà \(\widehat{B}=40^o\)(GT)
\(\widehat{C_2}=30^o\)(Theo (2))
Ngoặc ''}'' 3 điều trên
=> \(\widehat{CDA}=40^o+30^o=70^o\)
Vậy \(\widehat{CDA}\) = 70o; \(\widehat{CDB}\) = 110o