Tìm các số A, B, C để có:
a) (x^2-x+2)/(x-1)^3=[A/(x-1)^3]+[B/(x-1)^2]+C/(x-1)
b) (x^2+2x-1)/(x+1)(x^2+1)=[A/(x-1)]+[(Bx+C)/(x^2+1)]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)1-1-2
2)2-1-3
3)2-6-2-3
4)1-6-2-3
5)1-3-1-3
6)1-1-1-1
7)2-2-3
8)4-5-2
9)1-6-2-3
\(A=\frac{1}{x^2-x}+\frac{1}{x^2+x+1}+\frac{2x}{1-x^3}\)
\(A=\frac{1}{x.\left(x-1\right)}+\frac{1}{x^2+x+1}+\frac{2x}{\left(1-x\right)\left(x^2+x+1\right)}\)
\(A=\frac{x^2+x+1}{x.\left(x-1\right)\left(x^2+x+1\right)}+\frac{x\left(x-1\right)}{x.\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x^2}{x.\left(x-1\right)\left(x^2+x+1\right)}\)
\(A=\frac{x^2+x+1}{x.\left(x-1\right)\left(x^2+x+1\right)}+\frac{x^2-x}{x.\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x^2}{x.\left(x-1\right)\left(x^2+x+1\right)}\)
\(A=\frac{x^2+x+1+x^2-x-2x^2}{x.\left(x-1\right)\left(x^2+x+1\right)}\)
\(A=\frac{1}{x.\left(x-1\right)\left(x^2+x+1\right)}\)
\(A=\frac{1}{x.\left(x^3-1\right)}\)
Với x=10
\(\Rightarrow A=\frac{1}{10.\left(10^3-1\right)}\)
\(A=\frac{1}{10.999}\)
\(A=\frac{1}{9990}\)
Vậy \(A=\frac{1}{9990}\)tại x=10