K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2014

Để mình giải giúp ha !!

ta có 20a20a20a=20a20a . 1000 +20a =(20a . 1000+20a)1000+20a

                                                        =1001 . 20a . 1000 + 20a 

Theo đề bài 20a20a20a chia hết cho 7 , mà 1001 chia hết cho 7 nên => 20a chia hết cho 7

nên (4 + a) chia hết cho 7 . Vậy a = 3

13 tháng 12 2014

b)ta co:ab+ba=(a.10+b)+(b.10+a)=11a+11b

suy ra ab+ba chia het cho 11

AH
Akai Haruma
Giáo viên
9 tháng 7 2024

Lời giải:

$A=(4+4^3+4^5+...+4^{17})+(4^2+4^4+4^6+...+4^{16})$

$=[4+(4^3+4^5)+(4^7+4^9)+....+(4^{15}+4^{17})]+[(4^2+4^4)+(4^6+4^8)+...+(4^{14}+4^{16})]$

$=[4+4^3(1+4^2)+4^7(1+4^2)+...+4^{15}(1+4^2)]+[4^2(1+4^2)+4^6(1+4^2)+....+4^{14}(1+4^2)]$

$=4+(1+4^2)(4^3+4^7+...+4^{15}+4^2+4^6+...+4^{14})$

$=4+17(4^3+4^7+...+4^{15}+4^2+4^6+...+4^{14})$

$\Rightarrow A$ chia $17$ dư $4$.

8 tháng 12 2014

x=1 hoặc 3 hoặc 5 hoặc 15

y=18 hoặc 8 hoặc 6 hoặc 4 

1 tháng 2 2017

ywuwncccc

3 tháng 2 2017

MÌnh cx hỏi câu này

AH
Akai Haruma
Giáo viên
9 tháng 7 2024

Lời giải:

CM $A\vdots 7$:

$A=(2+2^2+2^3)+(2^4+2^5+2^6)+....+(2^{58}+2^{59}+2^{60})$

$=2(1+2+2^2)+2^4(1+2+2^2)+....+2^{58}(1+2+2^2)$

$=(1+2+2^2)(2+2^4+....+2^{58})$

$=7(2+2^4+....+2^{58})\vdots 7$

------------------------------

CM $A\vdots 3$:

$A=(2+2^2)+(2^3+2^4)+....+(2^{59}+2^{60})$

$=2(1+2)+2^3(1+2)+....+2^{59}(1+2)$

$=(1+2)(2+2^3+...+2^{59})=3(2+2^3+....+2^{59})\vdots 3$

-----------------------------

CM $A\vdots 15$:

$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^{57}+2^{58}+2^{59}+2^{60})$

$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{57}(1+2+2^2+2^3)$

$=(1+2+2^2+2^3)(2+2^5+...+2^{57})$

$=15(2+2^5+...+2^{57})\vdots 15$

9 tháng 7 2016

Có 1 cách chia tổ, mỗi tổ có tất cả 47 người

9 tháng 7 2016

Chỉ có một cách chia, Khi đó mỗi tổ có 47 nam, 32 nữ

AH
Akai Haruma
Giáo viên
9 tháng 7 2024

Lời giải:

$x+6y\vdots 5$

$\Rightarrow x+6y-5y\vdots 5$

$\Rightarrow x+y\vdots 5$

$\Rightarrow 4(x+y)\vdots 5$

$\Rightarrow 4x+4y\vdots 5$

AH
Akai Haruma
Giáo viên
9 tháng 7 2024

Lời giải:
$A=2+2^2+2^3+2^4+....+2^{108}$

$2A=2^2+2^3+2^4+2^5+...+2^{109}$

$\Rightarrow 2A-A=2^{109}-2$

$\Rightarrow A=2^{109}-2$