Cho p là số nguyên tố lớn hơn 3 .Biết p+2 cũng là số nguyên tố .Chứng minh rằng p+1 chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Cứ cơ số 2 có mũ lẻ thì số đó chia cho 3 dư 1, mũ chẵn thì chia 3 dư 2
Cứ 1 cặp như vậy cộng lại thì sẽ chia hết cho 3 ( vd: 2^0 + 2^1 ; 2^2 + 2^3 ;...)
Vậy từ 2^3 đến 2^2010 có 1004 cặp chia hết cho 3 như thế
Vậy chỉ còn lại 2^0 + 2^1 + 2^2 = 7, chia cho 3 dư 1
Đáp án: dư 1
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu hỏi của Phạm Phương Liên - Toán lớp 6 - Học toán với OnlineMath
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(y=\left(\frac{1}{x^2+\sqrt{x}}\vec{\eta}\frac{\sqrt{^{ }_{ }\vec{ }}}{ }\right)\)
a, Vì 2 điểm A,B cùng nằm trên tia Ox mà OA < OB (3cm<5cm)=> Điểm A nằm giữa 2 điểm O và B=>OA+AB=OB.Thay số: 3+AB=5=>
AB=5-3=2(cm).Vậy AB=2cm
b,Vì 2 điểm A,C lần lượt nằm trên 2 tia đối nhau chung gốc O=> Điểm O nằm giữa 2 điểm A và C, đồng thời OC=OA ( vì cùng =3cm) =>Điểm O là trung điểm của đoạn thẳng AC. Vậy điểm O là trung điểm của đoạn AC
![](https://rs.olm.vn/images/avt/0.png?1311)
vi p la so nguyen to lon hon 3 suy ra p co dang 3k+1 hoac 3k+2 .voi p =3k+1 suy ra p+2=3k+1+2=3k+3 (chia het cho 3 la hop so trai voi de bai . loai)
suy ra p co dang 3k+2
vi p+1 chia het cho 6 suy ra p chia het cho 3;2 (1)
vi p=3k+2 suy ra p+1 = 3k+2+1=3k+3 chia het cho 3 (2)
vi co dang 3k+2 va la mot so nguyen to lon hon 2 suy ra3k+2 la mot so le (3)
mot so le+ mot so le khac se la mot so chan suy ra 3k+2+1la so chan chia het cho 2(4)
tu (1),(2),(3),(4) suy ra p+1 chia het cho 6
p là 1 số nguyên tố lớn hơn 3 => p=3k+1 hoặc p=3k+2 (k\(\in\)N*)
TH1: Nếu p=3k+1
=>p+2=3k+1+2=3k+3=3(k+1) không phải số nguyên tố
Ta loại trường hợp p=3k+1
TH2: Nếu p=3k+2
=>p+2=3k+2+2=3k+4 là số nguyên tố
Vậy p=3k+2
=>p+1=3k+2+1=3k+3=3(k+1) chia hết cho 3 (1)
Vì p là số nguyên tố lớn hơn 3 nên p=3k+2 là số lẻ <=> p+1 là số chẵn <=> p+1 chia hết cho 2 (2)
Từ (1),(2) và ƯCLN(2;3)=1 => p+1 chia hết cho 6 (đpcm)