Cho x y z > 0 và xyz=8. Tìm Max của \(P=\frac{x-2}{x+1}+\frac{y-2}{y+1}+\frac{z-2}{z+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 4:
Số chia là
116-8-10=98
Số BC là
98x10+8=988
Bài 5 tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số bi của người đó là a (a > 0) ; số bi trong mỗi hộp là k (k < 63)
Ta có a : 63 = k dư 1
=> a - 1 = 63 x k
=> a = 63 x k + 1 (1)
Lại có (a + 47) : 67 = k
=> a + 47 = 67 x k
=> a = 67 x k - 47 (2)
Từ (1) (2) => 63 x k + 1 = 67 x k - 47
=> 67 x k - 63 x k = 47 + 1
=> 4 x k = 48
=> k = 12 (tm)
=> a = 12 x 63 + 1 = 757 (tm)
Vậy tổng số phấn của người đó là 757 viên ; số phấn trong mỗi hộp là 12 viên
![](https://rs.olm.vn/images/avt/0.png?1311)
\(b\ne0\)
\(a-b=\frac{a}{b}\Rightarrow ab-b^2=a\Rightarrow a\left(b-1\right)=b^2=b^2-1+1=\left(b-1\right)\left(b+1\right)+1\)
\(\Rightarrow\left(b-1\right)\left(a-b-1\right)=1\)
=> (b-1)=(a-b-1)=1 => a=4; b=2 Hoặc
![](https://rs.olm.vn/images/avt/0.png?1311)
a. \(\left(2-\frac{3}{4}\right)^2:\frac{11}{16}=\frac{5}{4}^2.\frac{11}{16}=\frac{25}{16}.\frac{16}{11}=\frac{25}{11}\)
b. \(2^3.\frac{7}{20}+\frac{7}{10}=8.\frac{7}{20}+\frac{7}{10}=\frac{14}{5}+\frac{7}{10}=\frac{7}{2}\)
c. \(\sqrt{3^2+4^2}-\sqrt{1^3+2^3+3^3}=\sqrt{9+16}-\sqrt{1+8+27}\)
\(=\sqrt{25}-\sqrt{36}=5-6=-1\)
d. \(21^3:\left(-7\right)^3=\left(21:\left(-7\right)\right)^3=-3^3=-27\)
a) \(\left(2-\frac{3}{4}\right)^2\div\frac{11}{16}=\left(\frac{5}{4}\right)^2.\frac{16}{11}=\frac{25}{16}.\frac{16}{11}=\frac{25}{11}\)
b) \(2^3.\frac{7}{20}+\frac{7}{10}=8.\frac{7}{20}+\frac{7}{10}=\frac{14}{5}+\frac{7}{10}=\frac{7}{2}\)
c) \(\sqrt{3^2+4^2}-\sqrt{1^3+2^3+3^3}=\sqrt{9+16}-\sqrt{1+8+27}\)
\(=\sqrt{25}-\sqrt{36}=5-6=-1\)
d) \(\frac{21^3}{\left(-7\right)^3}=\frac{9261}{-343}=-27\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 : em chưa học
Bài 2 : \(A=a+\left(42-70+18\right)-\left(42+18+a\right)\)
\(=a-10-60-a=-70\)
+) Ta chứng minh: \(\frac{x-2}{x+1}\le\frac{x-2}{3}\)
\(\Leftrightarrow\frac{3\left(x-2\right)-\left(x-2\right)\left(x+1\right)}{3\left(x+1\right)}\le0\)'
\(\Leftrightarrow\frac{-\left(x-2\right)^2}{3\left(x+1\right)}\le0\)(luôn đúng)
+) \(6=3\sqrt[3]{xyz}\le x+y+z\)
+) \(\text{Σ}\frac{x-2}{x+1}\le\frac{x-2+y-2+z-2}{3}\le\frac{0}{3}=0\)
Dấu = xảy ra khi x = y = z = 2