K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2020

1, electricity gas and water are ..........necessities..........in western countries  NEED

2, there has been some........reduction.........in unemployment  REDUCE

3, there are lots oof technological.........innovations..........designed to save energy INNOVATE

4, I switched the light off to save.........electricity..........ELECTRIC

 
15 tháng 8 2020

mọi người giúp mình với

15 tháng 8 2020

a) Áp dụng định lí Py-ta-go vào \(\Delta AHB\) vuông ở \(\widehat{H}\)ta có:

      AB2=AH2+BH2

 => AB=\(\sqrt{16^2+25^2}\)

<=>AB=\(\sqrt{881}\)

  Áp dụng hệ thức 2 vào \(\Delta ABC\)vuông tại \(\widehat{A}\)ta có:

        AH2=BH.CH

<=> 162=25.CH

<=>256=25.CH

  =>CH=\(\frac{256}{25}\)=10,24

  Ta có:BC=BH+CH

     <=>BC=25+\(\frac{256}{25}\)=\(\frac{881}{25}\)=35.24

  Áp dụng định lí Py-ta-go vào \(\Delta ABC\)vuông tại \(\widehat{A}\)ta có:

       BC2=AB2+AC2

<=>AC2=BC2-AB2

  =>AC=\(\sqrt{\left(\sqrt{881}\right)^2-\left(\frac{881}{25}\right)^2}\)=\(-\sqrt{360,8576}\)

b)Áp dụng định lí Py-ta-go vào \(\Delta AHB\)vuông tai \(\widehat{H}\)ta có:

      AB2=AH2+BH2

<=>AH2=AB2-BH2

<=>AH=\(\sqrt{12^2-6^2}\)=\(\sqrt{108}\)

  Áp dụng hệ thức 2 vào \(\Delta ABC\)vuông tai \(\widehat{A}\)ta có:

       AH2=BH.CH

<=>108=36.CH

  =>CH=\(\frac{108}{36}\)=3

 Ta có:BC=BH+CH

   <=> BC=6+3=9

  Áp dụng Py-ta-go vào \(\Delta ABC\)vuông tại \(\widehat{A}\)ta có:

            BC2=AB2+AC2

     <=>AC2=BC2-AB2

      => AC=\(\sqrt{9^2-12^2}\)=\(-\sqrt{63}\)

Nhớ sau mỗi kết quả của phép tính viết "(cùng đơn vị đo)" nhé!

15 tháng 8 2020

\(a,2\left(x+5\right)-x^2-5x=0\)

\(< =>2x+10-x^2-5x=0\)

\(< =>-x^2-3x+10=0\)

\(< =>-\left(x^2+3x+\frac{9}{4}\right)+\frac{49}{4}=0\)

\(< =>-\left(x+\frac{3}{2}\right)^2=-\frac{49}{4}\)

\(< =>\left(x+\frac{3}{2}\right)^2=\frac{49}{4}< =>\orbr{\begin{cases}x+\frac{3}{2}=\sqrt{\frac{49}{4}}\\x+\frac{3}{2}=-\sqrt{\frac{49}{4}}\end{cases}}\)

\(< =>\orbr{\begin{cases}x=\frac{7}{2}-\frac{3}{2}=\frac{4}{2}=2\\x=-\frac{7}{2}-\frac{3}{2}=-\frac{10}{2}=-5\end{cases}}\)

b, Đật x = y+5/3 khi đó phương trình trở thành 

\(y^3-\frac{37}{3}y+\frac{476}{27}=0\)

Đặt \(y=u+v\)sao cho uv=37/9 thế vào ta được phương trình mới sau ta được

\(u^3+v^3+\left(3uv-\frac{37}{3}\right)\left(u+v\right)+\frac{426}{27}=0\)

Khi đó ta có hệ sau : \(\hept{\begin{cases}u^3+v^3=-\frac{426}{27}\\u^3v^3=\frac{50653}{729}\end{cases}}\)

Theo Vi ét u^3 và v^3 là 2 nghiệm của pt \(x^2-\frac{426}{27}x+\frac{50653}{729}=0\)

Đến đây delta phát rồi tìm ngược lại là xong :))))

mình dùng cardano nhưng làm trong nháp xong gửi nên chắc chắc bạn sẽ không hiểu được :V

15 tháng 8 2020

làm luôn câu cuối nhé ^^

\(\left(2x-1\right)^2-\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(4x^2-4x+1\right)-\left(x^2+6x+9\right)=0\)

\(\Leftrightarrow4x^2-4x+1-x^2-6x-9=0\)

\(\Leftrightarrow3x^2-10x-8=0\)

\(\Leftrightarrow3\left(x^2-\frac{10}{3}x+\frac{25}{9}\right)-\frac{147}{9}=0\)

\(\Leftrightarrow3\left(x-\frac{5}{3}\right)^2=\frac{147}{9}\Leftrightarrow\left(x-\frac{5}{3}\right)^2=\frac{147}{27}\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{5}{3}=\sqrt{\frac{147}{27}}\\x-\frac{5}{3}=-\sqrt{\frac{147}{27}}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{147}{27}}+\frac{5}{3}\\x=-\sqrt{\frac{147}{27}}+\frac{5}{3}\end{cases}}\)

15 tháng 8 2020

a) \(2.\left(x+5\right)-x^2-5x=0\)

\(\Leftrightarrow2.\left(x+5\right)-x.\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)

Vậy \(S=\left\{-5,2\right\}\)

b) \(x^3-5x^2-4x+20=0\)

\(\Leftrightarrow x^2\left(x-5\right)-4.\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x^2-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=5\\x=\pm2\end{cases}}\)

Vậy \(S=\left\{5,\pm2\right\}\)

c) \(\left(2x-1\right)^2-\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(2x-1-x-3\right)\left(2x-1+x+3\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\3x+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=-\frac{3}{2}\end{cases}}\)

Vậy \(S=\left\{4,-\frac{3}{2}\right\}\)

16 tháng 8 2020

a.

+) Với x lớn hơn hoặc bằng 0

\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2x+3+2x\)

\(=\left(2020+3\right)-\left(2x-2x\right)=2023\)

Vậy A có một giá trị duy nhất là 2023 với mọi x lớn hơn hoặc bằng 0

+) Với x < - 1

\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2x-\left(3+2x\right)\)

\(=2020-2x-3-2x=2017-4x\ge2017\)

Dấu "=" xảy ra \(\Leftrightarrow4x=0\Leftrightarrow x=0\left(ktm\right)\)

+) Với x = - 1

\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2\left(-1\right)+\left|3+2\left(-1\right)\right|\)

\(=2020+2+1=2023\left(tm\right)\)

Vậy A nhỏ nhất và có một giá trị duy nhất là 2023 \(\Leftrightarrow x\ge-1\)

15 tháng 8 2020

a) a=12,b=1

\(\frac{1}{12}=\frac{2}{12}+\frac{4}{12}\) hay \(\frac{1}{12}=\frac{1}{6}+\frac{1}{3}\)

b)a=4,b=4

\(\frac{4}{4}-\frac{1}{4}=\frac{3}{4}\)

15 tháng 8 2020

a) \(\frac{1}{a}=\frac{1}{6}+\frac{b}{3}\)

=> \(\frac{1}{a}=\frac{1}{6}+\frac{2b}{6}\)

=> \(\frac{1}{a}=\frac{2b+1}{6}\)

=> \(a\left(2b+1\right)=6\)

Ta có bảng sau :

a1-12-23-36-6
2b+16-63-32-21-1
a1-12-23-36-6
b5/2-7/21-21/2-3/20-1

Vì a, b thuộc N

=> (a , b) = { 2 ; 1 ) , ( -2 ; -2 ) , ( 6 ; 0 ) , ( -6 ; - 1 ) }

b) \(\frac{a}{4}-\frac{1}{b}=\frac{3}{4}\)

=> \(\frac{a}{4}-\frac{3}{4}=\frac{1}{b}\)

=> \(\frac{a-3}{4}=\frac{1}{b}\)

=> \(\left(a-3\right)\cdot b=4\)

Ta có bảng sau :

a-31-12-24-4
b4-42-21-1
a42517-1
b4-42-21-1

Vì a, b thuộc N

=> ( a , b ) = { ( 4 ; 4 ) , ( 5 ; 2 ) , ( 7 , 1 ) }

Không chắc nha ;-;

15 tháng 8 2020

Là 53 nhé

Hok tốt!

he said that he ... in 1973 

A. had been born    B. was born     C. born     D. had born

Đáp án : B. was born 

Học tốt

15 tháng 8 2020

b nha chị

15 tháng 8 2020

\(Q=\frac{x-y}{\sqrt{x}-\sqrt{y}}-\frac{\sqrt{x^3}-\sqrt{y^3}}{x-y}\)

\(Q=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-y\right)-x\sqrt{x}+y\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(Q=\frac{x\sqrt{x}-y\sqrt{x}+x\sqrt{y}-y\sqrt{y}-x\sqrt{x}+y\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(Q=\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(Q=\frac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

15 tháng 8 2020

\(R=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right).\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)

\(R=\left[\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right].\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)

\(R=\left(1+\sqrt{a}+a\right).\frac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)^2.\left(1+\sqrt{a}\right)^2}\)

\(=\left(1+\sqrt{a}\right)^2.\frac{1}{\left(1+\sqrt{a}\right)^2}=1\)