Tính giá trị biểu thức :
\(M=\frac{\frac{2}{3}-\frac{2}{5}+\frac{2}{9}+\frac{2}{13}}{\frac{11}{3}-\frac{11}{5}+\frac{11}{9}+\frac{11}{3}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để \(\frac{3n+5}{n+1}\)là số tự nhiên (ĐK : \(n\ne-1\))
\(\Leftrightarrow3n+5⋮n+1\)
\(\Leftrightarrow3\left(n+1\right)+2⋮n+1\)
\(\Leftrightarrow2⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Leftrightarrow n\in\left\{-2;0;-3;-1\right\}\)
Mà n khác -1
Vậy để \(\frac{3n+5}{n+1}\in N\Leftrightarrow n\in\left\{-2;0;-3\right\}\)
Làm tương tự với các ý còn lại
Theo cách viết của dãy, ta có kết quả :
1/1; 1/2; 2/1; 1/3; 2/2; 3/1; 1/4; 2/3; 3/2; 4/1; 1/5.
sửa: chứng minh \(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ca}\ge\frac{3}{2}\)
áp dụng bđt Cauchy ta có
\(\frac{1}{1+ab}=1-\frac{1}{1+ab}\ge1-\frac{ab}{2\sqrt{ab}}=1-\frac{\sqrt{ab}}{2}\)
tương tự ta có \(\hept{\begin{cases}\frac{1}{1+bc}\ge1-\frac{\sqrt{bc}}{2}\\\frac{1}{1+ca}\ge1-\frac{\sqrt{ca}}{2}\end{cases}}\)
cộng theo vế các bđt trên và áp dụng bđt Cauchy ta được
\(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ac}\ge3-\frac{1}{2}\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
\(\ge3-\frac{1}{2}\left(\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}\right)=3-\frac{a+b+c}{2}\ge3-\frac{3}{2}=\frac{3}{2}\)
dấu "=" xảy ra khi \(\hept{\begin{cases}1+ab=1+bc=1+ca\\a=b=c\\a+b+c=3\end{cases}\Leftrightarrow a=b=c=1}\)
a) n + 11 ⋮ n - 1
b) 7n ⋮ n - 3
c) n2 + 2n + 6 ⋮ n + 4
d) n2 + n +1 ⋮ n + 1
a) Để n + 11 \(⋮\)n - 1
=> n - 1 + 12 \(⋮\)n - 1
Vì n - 1 \(⋮\)n - 1
=> 12 \(⋮\)n - 1
=> n - 1 \(\inƯ\left(12\right)\)
=> n - 1 \(\in\left\{1;2;3;4;6;12\right\}\)
=> n \(\in\left\{2;3;4;5;7;13\right\}\)
b) Để 7n \(⋮\)n - 3
=> 7n - 21 + 21 \(⋮\)n - 3
=> 7(n - 3) + 21 \(⋮\)n - 3
Vì 7(n - 3) \(⋮\)n - 3
=> 21 \(⋮\)n - 3
=> n - 3 \(\inƯ\left(21\right)\)
=> n - 3 \(\in\left\{1;3;7;21\right\}\)
=> n \(\in\left\{4;6;10;24\right\}\)
c) Để n2 + 2n + 6 \(⋮\)n + 4
=> (n2 + 8n + 16) - 6n - 10 \(⋮\)n + 4
=> (n2 + 4n) + (4n + 16) - 6n - 24 + 14 \(⋮\)n + 4
=> n(n + 4) + 4(n + 4) - 6(n + 4) + 14 \(⋮\)n + 4
=> n + 4(n + 4 - 6) + 14 \(⋮\)n + 4
=> (n + 4)(n - 2) + 14 \(⋮\)n + 4
Vì (n + 4)(n + 2) \(⋮\)n + 4
=> 14 \(⋮\)n + 4
=> n + 4 \(\inƯ\left(14\right)\)
=> n + 4 \(\in\left\{1;2;7;14\right\}\)
=> n \(\in\left\{-3;-2;3;10\right\}\)(Vì n là số tự nhiên)
Vậy n \(\in\left\{3;10\right\}\)
d) Để n2 + n + 1 \(⋮\)n + 1
=> n2 + 2n + 1 - n - 1 + 1 \(⋮\)n + 1
=> (n2 + n) + (n + 1) - (n + 1) + 1 \(⋮\)n + 1
=> n(n + 1) + 1 \(⋮\)n + 1
Vì n(n + 1) \(⋮\)n + 1
=> 1 \(⋮\)n + 1
=> n + 1 = 1
=> n = 0
Vậy n = 0
\(C=-2x^2+8x-15\)
\(\Leftrightarrow C=-2\left(x^2-4x+4\right)-7\)
\(\Leftrightarrow C=-7-2\left(x-2\right)^2\le-7\)
Dấu = xảy ra khi x=2
vậy Max C =7 khi x=2
ko có min nhé
Sửa đề + làm bài \(M=\frac{\frac{2}{3}-\frac{2}{5}+\frac{2}{9}+\frac{2}{13}}{\frac{11}{3}-\frac{11}{5}+\frac{11}{9}+\frac{11}{13}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{9}+\frac{1}{13}\right)}{11\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{9}+\frac{1}{13}\right)}=\frac{2}{11}\)
Có 1 chỗ bạn ghi sai đề phải là \(\frac{11}{13}\)chứ ko phải \(\frac{11}{3}\)nhé
\(M=\frac{\frac{2}{3}-\frac{2}{5}+\frac{2}{9}+\frac{2}{13}}{\frac{11}{3}-\frac{11}{5}+\frac{11}{9}+\frac{11}{13}}\)
\(=\frac{2.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{9}+\frac{2}{13}\right)}{11.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{9}+\frac{1}{13}\right)}\)
\(=\frac{2}{11}\)
Học tốt