Cho hình thang ABCD (AB // CD). Trên cạnh AD lấy 3 điểm E, M, P sao cho
AE = EM = MP = PD. Trên cạnh BC lấy 3 điểm F, N, Q sao cho BF = FN = NQ = QC.
Biết AB = 8 cm, DC = 12 cm. Tính MN, EF, PQ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình không biết vẽ hình trên đây nên bạn thông cảm nhé
a,Vì AM là đường trung tuyến của tam giác ABC
=>BM=CM
Xét tam giác CBD có:
BM=CM
CN=DN(N là trung điểm của DC)
=>MN là đường trung bình của tam giác CBD
=> MN//BD
=>MN//ID
Xét tam giác AMN có:
AI=MI(I là trung điểm của AM)
ID//MN
=>AD=ND hay D là trung điểm của AN(định lý về đường trung bình trong tam giác)
b, Xét tam giác CBD có:
BM=CM
CN=DN(N là trung điểm của DC)
=>MN là đường trung bình của tam giác CBD
=>BD=2MN
c, Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A, ta có:
AC2=BC2-AB2
=>AC2=132-52
=>AC2=144
=>AC=12(cm)
Ta có: AD=\(\frac{1}{3}\)AC( vì AD=DN=NC)
=>AD=4(cm)
Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại A, ta có:
BD2=AB2+AD2
BD2=52+42
BD2=41
BD=6,4(cm)(xấp xỉ thôi nha)
d, Vì BD=2MN(câu b)
=>MN=\(\frac{BD}{2}=\frac{6,4}{2}=3,2\)(cm)
Xét tam giác AMN có:
AI=MI(I là trung điểm của AM)
AD=ND(D là trung điểm của AN)
=>ID là đường trung bình của tam giác AMN
=>MN=2ID
=>ID=\(\frac{MN}{2}=\frac{3,2}{2}=1,6\)(cm)
mà BD=BI+ID
=>BI=BD-ID
=>BI=6,4-1,6
=>BI=4,8(cm)
Nửa chu vi thửa ruộng đó là
240 : 2 = 120 m
Vì chiều rộng bằng 1/4 chiều dài
=> Chiều rộng chiếm 1 phần ; chiều dài chiếm 4 phần
Tổng số phần bằng nhau là
1 + 4 = 5 phần
=> Độ dài chiều dài là : 120 : 5 x 4 = 96 m
=> Độ dài chiều rộng là 120 - 96 = 24 m
Diện tích thửa ruộng đó là
96 x 24 = 2304 m2
Đáp số 2304 m2
nửa chu vi thửa rượng trên là :
240 : 2 = 120 ( m)
tổng số phần bằng nhau là :
4+1= 5 ( phần )
chiều dài thửa ruộng là :
120 : 5 *4 = 96 ( m )
chiều rộng thửa rượng là :
120 - 96 = 24 (m)
diện tích thửa ruộng là
24 * 96 = 2304 ( m2 )
đáp số : 2304 m2
đúng không ???
+) \(P=\frac{x^2}{y^2+yz+z^2}+\frac{y^2}{x^2+xz+z^2}+\frac{z^2}{x^2+xy+y^2}\)
\(\ge\text{Σ}\frac{x^2}{y^2+\frac{y^2+z^2}{2}+z^2}=\frac{2}{3}\text{Σ}\frac{x^2}{y^2+z^2}\)
+) Đặt \(a=x^2;b=y^2;c=z^2\)
Ta có: \(A=\text{Σ}\frac{x^2}{y^2+z^2}=\text{Σ}\frac{a}{b+c}=\text{Σ}\frac{a^2}{ab+ac}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\ge\frac{3}{2}\)(BDT Nesbitt)
Vậy \(P=\frac{2}{3}A\ge1\)
Dấu = xảy ra khi x = y = z
Trả lời :
Muỗi anophen truyền bệnh sốt rét cho còn người
Học tốt!!!
+) \(P=\sqrt{1-x^2}+\sqrt{1-y^2}+\sqrt{1-z^2}\)
\(\le\frac{1-x^2+\frac{3}{4}}{\sqrt{3}}+\frac{1-y^2+\frac{3}{4}}{\sqrt{3}}+\frac{1-z^2+\frac{3}{4}}{\sqrt{3}}\)
\(=\frac{\frac{21}{4}-x^2-y^2-z^2}{\sqrt{3}}\)
+) \(1=xy+yz+xz+2xyz\le\frac{\left(x+y+z\right)^2}{3}+\frac{2\left(x+y+z\right)^3}{27}\)
Đặt \(a=x+y+z\), ta được \(2a^3+9a^2-27\ge0\Leftrightarrow\left(2a-3\right)\left(a+3\right)^2\ge0\Rightarrow a\ge\frac{3}{2}\)
+) \(A=x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{\frac{9}{4}}{3}=\frac{3}{4}\)
+) \(P\ge\frac{\frac{21}{4}-A}{\sqrt{3}}=\frac{\frac{21}{4}-\frac{3}{4}}{\sqrt{3}}=\frac{9}{2\sqrt{3}}=\frac{3\sqrt{3}}{2}\)
Dấu = xảy ra khi x = y = z = 1/2
a) 60-3(x-2)=51
3(x-2)=60-51
3(x-2)=9
x-2 = 9:3
x-2 = 3
x = 3+2
x 5
1) a.Ta có \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)
Vì \(3\inℤ\Rightarrow\frac{21}{n-4}\inℤ\Rightarrow21⋮n-4\Rightarrow n-4\inƯ\left(21\right)\)
=> \(n-4\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
=> \(n\in\left\{5;3;8;1;11;-3;25;-17\right\}\)
b) Ta có B = \(\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)
Vì \(3\inℤ\Rightarrow\frac{8}{2n-1}\inℤ\Rightarrow2n-1\inƯ\left(8\right)\Rightarrow2n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)(1)
lại có với mọi n nguyên => 2n \(⋮\)2 => 2n - 1 không chia hết cho 2 (2)
Kết hợp (1) ; (2) => \(2n-1\in\left\{1;-1\right\}\Rightarrow n\in\left\{1;0\right\}\)
2) Ta có : \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
=> \(\frac{20+xy}{4x}=\frac{1}{8}\)
=> 4x = 8(20 + xy)
=> x = 2(20 + xy)
=> x = 40 + 2xy
=> x - 2xy = 40
=> x(1 - 2y) = 40
Nhận thấy : với mọi y nguyên => 1 - 2y là số không chia hết cho 2 (1)
mà x(1 - 2y) = 40
=> 1 - 2y \(\inƯ\left(40\right)\)(2)
Kết hợp (1) (2) => \(1-2y\in\left\{1;5;-1;-5\right\}\)
Nếu 1 - 2y = 1 => x = 40
=> y = 0 ; x = 40
Nếu 1 - 2y = 5 => x = 8
=> y = -2 ; x = 8
Nếu 1 - 2y = -1 => x = -40
=> y = 1 ; y = - 40
Nếu 1 - 2y = -5 => x = -8
=> y = 3 ; x =-8
Vậy các cặp (x;y) thỏa mãn là : (40 ; 0) ; (8; - 2) ; (-40 ; 1) ; (-8 ; 3)
4) \(\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{5}{19}}{\left(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35}\right).\frac{-4}{3}}=\frac{-\frac{19}{60}.\frac{5}{19}}{\frac{21}{70}.\frac{-4}{3}}=\frac{-\frac{5}{60}}{\frac{2}{5}}=-\frac{5}{60}:\frac{2}{5}=-\frac{5}{24}\)
b) \(\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(6,3.12-21.3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}}\)
\(=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).0}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}=0\)
c) \(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}}=\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{4\left(\frac{1}{9}-\frac{1}{7}-\frac{1}{11}\right)}+\frac{3\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}\right)}{4\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}\right)}\)
\(=\frac{1}{4}+\frac{3}{4}=1\)