Chứng minh rằng :
a) Tích của 2 số tự nhiên liên tiếp thì chia hết cho 2 b) Tích của 3 số tự nhiên liên tiếp thì chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: (ab - ac)+ (bc - cc) = -1
=> a. (b - c)+ c. (b - c)= -1
=> (b - c). (a + c)= -1
=> b-c và a+c thuộc Ư(-1)={-1;1}
Vậy b-c=1 và a+c=-1 hoặc a+c=1 và b-c=-1
ta thấy b-c và a+c luôn luôn đối nhau
ta sẽ có: a+c=-(b-c)
=>a+c=-b+c
=>a = -b
Vậy a và b đối nhau nên sẽ có tổng là 0
Cảm ơn bạn Ma Ca Row đã giúp mình làm bài này. Mình cũng đã gặp rắc rối khi giải bài này. Cảm ơn bạn.
Thân ái,
Cao Thành Long
Phải có điều kiện của x. Thế thì x phải nhỏ nhất có thể. Kiếm đâu ra số x nhỏ nhất????
Nhưng x có thể thuộc Z mà
Nên x4 nhỏ hơn 0 giúp D có giá trị lớn hơn
Lời giải:
$-25x+(-103)=37-20x$
$\Rightarrow -25x-103+20x-37=0$
$\Rightarrow -5x-140=0$
$\Rightarrow -5x=140$
$\Rightarrow x=-28$
5 số tự nhiên liên tiếp là : a , a + 1 , a + 2 , a + 3 , a + 4
= 5a + 10 = 5 ( a + 2 )
vì 5 chia hết 5 => 5 ( a + 2 ) chia hết cho 5 => đpcm
goi 5 số đó là n ;n+1;n+2 ;n+3 ;n+4
ta có :n +(n+1)+(n+2)+(n+3)+(n+4)
= n.5 +(1+2+3+4)
=n.5+ 10
vì n.5 chia hết cho 5 ; 10 chia hết cho 5 nên n.5+10 chia hết cho 5
vậy tổng 5 số tự nhiên liên tiếp chia hết cho 5
vì n.(n+1) là tích 2 số tn liên tiếp.Suy ra n.(n+1) chia hết cho 2
mà n.(n+1).(n+2) là tích 3 số tự nhiên liên tiếp.Suy ra n.(n+1).(n+2) chia hết cho 3
từ 2 điều trên suy ra n.(n+1).(n+2) chia hết cho cả 2 và 3
vậy bài toán đã đc chứng minh rồi nhé
a) Ta thấy cứ 2 số tự nhiên liên tiếp chắc chắn có một số chia hết cho 2 nên tích của chúng phải chia hết cho 2
b) Gọi 3 số tự nhiên liên tiếp là a, a+1, a+2
Để tích 3 số tự nhiên liên tiếp chia hết cho 3 thì phải có 1 số chia hết cho 3
TH1: a chia hết cho 3, vậy tích của 3 số tự nhiên liên tiếp thì chia hết cho 3
TH2: a chia 3 dư 1=> a+2 chia hết cho 3 => tích của 3 số tự nhiên liên tiếp thì chia hết cho 3
TH3: a chia 3 dư 2 => a+1 chia hết cho 3 => tích của 3 số tự nhiên liên tiếp thì chia hết cho 3
Vậy tích của 3 số tự nhiên liên tiếp thì chia hết cho 3
cách khác:
a) trong 2 số tự nhiên sẽ có 1 số chẵn vá 1 số lẻ mà khi tích:
chẵn . lẻ = chẵn
--> tích 2 số tn liên tiếp chia hết cho 2
b) Gọi 3 stn liên tiếp là a, a+1, a+2
Nó sẽ xảy ra 3 TH
Th1: Nếu a chia cho 3 dư 0--> a chia hết cho 3.
Th2: Nếu a chia cho 3 dư 1--> 3k+1-->a+2 chia hết cho 3 thì tích 3 stn liên tiếp chia hết cho 3.
Th3: Nếu a chia cho 3 dư 2--> 3k+2--> a+1 chia hết cho 3 thì tích 3 stn liên tiếp chia hết cho 3.
Tích 3 stn liên tiếp chia hết cho 3