K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2019

B H C A d b A B D C E

1.Vẽ AH \(\perp\)BC;H\(\in\)BC

+, Xét D nằm trên đoạn thẳng HC 

\(\Delta HAB\)có \(\widehat{H}\)= 90Theo định lý Pytago ta có:

\(AH^2+BH^2=AB^2\Rightarrow AH^2=c^2-BH^2\)

\(\Delta HAD\)có \(\widehat{H}\)=900,theo định lý Pytago tacó:

\(AH^2+DH^2=AD^2\Rightarrow AH^2=d^2-DH^2\)

Do đó \(d^2-DH^2=c^2-BH^2\Rightarrow d^2=c^2+DH^2-BH^2\)

\(\Rightarrow d^2=c^2+BD\left(DH-BH\right)\Rightarrow d^2n=c^2n+mn\left(DH-BH\right)\)

Chứng minh tương tự ta có:

\(d^2m=b^2m+mn\left(-DH-CH\right)\)

Ta có: \(d^2m+b^2m+c^2n+mn\left(-DH-CH+DH-BH\right)\)

          \(d^2\left(m+n\right)=b^2m+c^2n+mn\left(-CH-BH\right)\)

         \(d^2a=b^2m+c^2n-amn\)

+, Xét D nằm trên đoạn thẳng HB

Chứng minh tương tự trên ta cũng có \(d^2a=b^2m+c^2n-amn\)

2.\(\widehat{ADC}>\widehat{ABC}\) (ADC là góc ngoài của tam giác ABD)

Do đó vẽ E trên cạnh AC sao cho góc ADE =góc ABC

ta có AE<AC

XÉT tam giác ABD và tam gác ADE có : góc BAD = góc DAE(AD phân giác)

                                                                 góc ABD=góc ADE

do đó \(\Delta ABD\infty\Delta ADE\Rightarrow\frac{AD}{AE}=\frac{AB}{AD}\Rightarrow AD^2=AB.AE\)

do đó \(AD^2< AB.AC\)

13 tháng 1 2019

a) \(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)

\(\Leftrightarrow x^4+2x^3+4x^2+3x+2=12\)

\(\Leftrightarrow x^4+2x^3+4x^2+3x+2=12-12\)

\(\Leftrightarrow x^4+2x^3+4x^2-10=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+5\right)\)

\(\Rightarrow\hept{\begin{cases}x=1\\x=2\end{cases}}\)

b) \(x\left(x+1\right)\left(x^2+x+1\right)=42\)

\(\Leftrightarrow x^4+2x^3+2x^2+x=42\)

\(\Leftrightarrow x^4+2x^3+2x^2+x=42-42\)

\(\Leftrightarrow x^4+2x^3+2x^2+x=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x^2+x+7=0\right)\)

\(\Rightarrow\hept{\begin{cases}x=2\\x=-3\\x=-\frac{1}{2}\end{cases}}\)

c) làm tương tự b).

d) \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x^2+x+1\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=1\\x=-\frac{1}{2}\end{cases}}\)

Trình độ hơi thấp, có gì sai sót mong bạn bỏ qua cho ạ

13 tháng 1 2019

Chỉ gợi ý thôi.

a) đặt x^2+x+1=t

=> pt <=> t(t+1)=12

tự làm nốt.

b) x(x+1)(x^2+x+1)=42

<=> (x^2+x)(x^2+x+1)=42

đặt x^2+x=t

=> pt <=>t(t+1)=42

...............................

c) x(x+1)(x-1)(x+2)=24

(x^2+x)(x^2+x-2)=24

Đặt x^2+x=t

=> pt <=> t(t-2)=24

............................

d) (x^2+1)^2+3x(x^2+1)+2x^2=0

(x^2+1)^2+x(x^2+1)+2x(x^2+1)+2x^2=0

(x^2+1)(x^2+x+1)+2x(x^2+x+1)=0

(x^2+x+1)(x^2+2x+1)=0

(x^2+x+1)(x+1)^2=0  (1)

Ta có: x^2+x+1=(x+1/2)^2+3/4>0 với mọi x

=> (1) <=> (x+1)^2=0

<=> x=-1

Vậy x=-1

12 tháng 1 2019

Để tìm Max M thì ta cần c/m \(a^2+b^2\le ab+1\)

Giả sử điều cần c/m là đúng , khi đó , ta có : 

\(a^2+b^2\le ab+1\)

\(\Leftrightarrow a^2-ab+b^2\le1\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\le a+b\)

\(\Leftrightarrow a^3+b^3\le a+b\)

\(\Leftrightarrow\left(a^3+b^3\right)^2\le\left(a+b\right)\left(a^5+b^5\right)\) ( do \(a^3+b^3=a^5+b^5\))

\(\Leftrightarrow a^6+2a^3b^3+b^6\le a^6+a^5b+b^5a+b^6\)

\(\Leftrightarrow2a^3b^3\le a^5b+b^5a\)

\(\Leftrightarrow a^5b+b^5a-2a^3b^3\ge0\)

\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow ab\left(a^2-b^2\right)\ge0\) ( điều này luôn đúng với a ; b dương ) 

=> Điều giả sử là đúng 

\(\Rightarrow a^2+b^2\le ab+1\)

\(\Rightarrow M=a^2+b^2-ab\le1\)

Dấu " = " xảy ra \(\Leftrightarrow\orbr{\begin{cases}ab=0\\a^2-b^2=0\end{cases}}\)  

\(\Leftrightarrow a=0\) hoặc \(b=0\)hoặc \(a^2=b^2\)

\(\Leftrightarrow a^2=b^2\)( a ,  b dương ) 

\(\Leftrightarrow a=b\)

Thế a = b vào b/t \(a^3+b^3=a^5+b^5\), ta có : 

\(2a^3=2a^5\)

\(\Leftrightarrow a^3=a^5\)\(\Leftrightarrow\frac{a^3}{a^5}=1\Leftrightarrow\frac{1}{a^2}=1\Leftrightarrow a=1\left(a>0\right)\)

\(\Leftrightarrow b=1\)

Vậy ...

13 tháng 1 2019

Nguyen quang trung dung , trẻ trâu như mày quê tao đầy 

12 tháng 1 2019

hai hình bằng nhau

12 tháng 1 2019

cách này bản quyền của t nhé :) Cauchy-Schwwarz dạng Engel + Cosi 

A B C D E F G H O

Ta có : 

\(S_{EFGH}=\frac{1}{2}EG^2=\frac{1}{2}\left(EF^2+FG^2\right)=\frac{1}{2}\left(AB^2+BC^2\right)=\frac{1}{2}\left(OA^2+OB^2+OC^2+OD^2\right)\)

\(\ge\frac{1}{2}.\frac{\left(OA+OB+OC+OD\right)^2}{1+1+1+1}=\frac{\left(AC+BD\right)^2}{8}=\frac{AC^2+BD^2+2AC.BD}{8}\)

\(\ge\frac{2\sqrt{\left(AC.BD\right)^2}+2AC.BD}{8}=\frac{2AC.BD+2AC.BD}{8}=\frac{4AC.BD}{8}=\frac{1}{2}AC.BD=S_{ABCD}\)

\(\Rightarrow\)\(S_{EFGH}\ge S_{ABCD}\)

Mà dấu "=" không xảy ra ở cả 2 bđt nên \(S_{EFGH}>S_{ABCD}\)

Vậy hình vuông có diện tích lớn hơn