Căn 0,09+ căn 2,21=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cộng 3 vế pt:
\(\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right)=6\)
Điều kiện xác định: x;y;z#0
Với \(x;y;z\in R>0\) áp dụng bất đẳng thức AM-GM cho 2 số dương:
\(VT\ge2\sqrt{\frac{x}{x}}+2\sqrt{\frac{y}{y}}+2\sqrt{\frac{z}{z}}=6=VP\)
Dấu "=" xảy ra khi: \(x=y=z=1\)
Với \(x;y;z\in R< 0\)thì \(\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right)< 0\)mà \(6>0\Leftrightarrow pt\)vô nghiệm
Vậy: \(x=y=z=1\)
Đk: \(x,y,z\ne0\)Rút x và z từ các pt:
\(x=\frac{2y-1}{y}\)
\(z=\frac{1}{2-y}\)
Thay vào pt thứ 3 ta đk
\(\frac{1}{2-y}+\frac{1}{\frac{2y-1}{y}}=2\)
Giari ra đk: y=1(t/m)
Thay vào pt ta đk:x=1 và z=1(t/m)
Đk : x >= 2/5
pt <=> \(2\sqrt{\left(5x-2\right).\left(x^2+x+1\right)}\)= x^2 + 6x - 1
Đặt \(\sqrt{5x-2}=a\)và \(\sqrt{x^2+x+1}=b\)
=> x^2+6x-1 = a^2+b^2
pt trở thành :
2ab = a^2+b^2
<=> a^2-2ab+b^2 = 0
<=> (a-b)^2 = 0
<=> a=b
<=> 5x-2 = x^2+x+1
<=> x^2+x+1 - 5x+2 = 0
<=> x^2-4x+3 = 0
<=> (x-1).(x-3) = 0
<=> x-1=0 hoặc x-3=0
<=> x=1 ( t/m ) hoặc x=3 ( t/m )
Vậy ........
Tk mk nha
mình nghĩ là :
CĂn 0,09 + căn 2,21 = 1,7860606874731851
mình không biết đúng không nữa chắc sai rồi !!!!!!!!