cho hàm số f(x) xác định với mọi x thỏa mãn f(X) +2f(1/x) = X^2 tính f(1/3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|2x-1\right|=\left|3x-2\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=3x-2\\2x-1=-\left(3x-2\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{3}{5}\end{cases}}\)
k hieu phan nao nhan tin hoi toi phan do ok ha
Xét tam giác ABC có :
BD là tia phân giác \(\widehat{B}\)(GT)
CE là tia phân giác \(\widehat{C}\)( GT)
Mà CE cắt BD tại I (GT)
Do đó AI là tia phân giác \(\widehat{A}\)( tính chất ba đường phân giác )
(ĐPCM)
x O y y A C B D E
lưu ý:^ là dấu góc nhé
a)Có: OC=OA+AC
OD=OB+BD
Mà : OA=OA(gt); AC=BD(gt)
=> OC=OD
Xét ΔOBC và ΔOAD có:
OC=OD(cmt)
\(\widehat{O}\) : góc chung
OB=OA(gt)
=> ΔOBC=ΔOAD(c.g.c)
=> BC=AD
b)Vì: ΔOBC =ΔOAD(cmt)
=> \(\widehat{\text{OCB}}\)=\(\widehat{ODA}\);OBCˆ=OADˆOCB^=ODA^;OBC^=OAD^ ( cặp góc tượng ứng)
Có: OADˆ+DACˆ=180 độ ;OAD^+DAC^=180 đọ
OBCˆ+CBDˆ=180độ ;OBC^+CBD^=180 độ
Mà: OBCˆ=OADˆ(cmt)OBC^=OAD^(cmt)
=> DACˆ=CBDˆDAC^=CBD^
Xét ΔEAC và ΔEBD có
ECAˆ=EDBˆ(cmt)ECA^=EDB^(cmt)
AC=BD(gt)
EACˆ=EBDˆ(cmt)EAC^=EBD^(cmt)
=> ΔEAC=ΔEBD(g.c.g)
c) Vì: ΔEAC=ΔEBD(cmt)
=> EC=ED
Xét ΔOEC và ΔOED có:
OC=OD(cmt)
OCEˆ=ODEˆ(cmt)OCE^=ODE^(cmt)
EC=ED(cmt)
=> ΔOEC=ΔOED(c.g.c)
=> EOCˆ=EODˆEOC^=EOD^
=> OE là tia pg của xOyˆxOy^
Xét ΔCOE và ΔDOE có:
OC=OD(cmt)
COEˆ=DOEˆ(cmt)COE^=DOE^(cmt)
OE: cạnh chung
=> ΔCOE=ΔDOE(c.g.c)
=> OECˆ=OEDˆ=90độ
Gọi góc ngoài đỉnh A chứa tia phân giác Am là \(\widehat{xAB}\)
Xét tam giác ABC có \(\widehat{xAB}\) là góc ngoài => \(\widehat{xAB}=\widehat{ABC}+\widehat{ACB}=50^0+50^0\)\(=100^0\)
Vì Am là tia phân giác \(\widehat{xAB}\)=> \(\widehat{xAm}=\widehat{mAB}=\frac{\widehat{xAB}}{2}=\frac{100^0}{2}=50^0\)
Ta thấy \(\widehat{mAB}=\widehat{ABC}\left(=50^0\right)\)mà chúng là 2 góc so le trong
=> Am // BC (đpcm)
xét tam giác ABM và tam giác ACM có:
A1=A2 (GIẢ THUYẾT)
AM:cạnh chung
GÓC B=GÓC C(=50\(^O\))
DO đó tam giác ABM = tam giác ACM(G.C.G)
hàm số f(x) xác định với mọi x thỏa mãn \(f\left(x\right)+2f\left(\frac{1}{x}\right)=x^2\)nên:
+) x = 3 thì \(f\left(3\right)+2f\left(\frac{1}{3}\right)=\frac{1}{9}\Rightarrow2f\left(3\right)+4f\left(\frac{1}{3}\right)=\frac{2}{9}\)(1)
+) x = \(\frac{1}{3}\)thì \(f\left(\frac{1}{3}\right)+2f\left(3\right)=9\)(2)
Lấy (1) - (2) ta được: \(3f\left(\frac{1}{3}\right)=\frac{-79}{9}\)
\(\Rightarrow f\left(\frac{1}{3}\right)=\frac{-79}{27}\)
Làm ngược, sửa:))
+) Nếu x = 3 thì \(f\left(3\right)+2f\left(\frac{1}{3}\right)=9\Rightarrow2f\left(3\right)+4f\left(\frac{1}{3}\right)=18\)(1)
+) Nếu x = \(\frac{1}{3}\) thì \(f\left(\frac{1}{3}\right)+2f\left(3\right)=\frac{1}{9}\)(2)
Lấy (1) - (2) ta được: \(3f\left(\frac{1}{3}\right)=\frac{161}{9}\)
\(\Rightarrow f\left(\frac{1}{3}\right)=\frac{161}{7}\)