Cho hàm số y=f(x) = m.x (m=tham số) . Tìm m biết : f ( 1/2 ) = 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : (7x - 5y)2018 + (3x - 2z)2020 + (xy + yz + xz - 4500)2018 = 0
Ta có : \(\hept{\begin{cases}\left(7x-5y\right)^{2018}\ge0\\\left(3x-2z\right)^{2020}\ge0\\\left(xy+yz+xz-4500\right)^{2018}\ge0\end{cases}}\)
\(\Rightarrow\left(7x-5y\right)^{2018}+\left(3x-2z\right)^{2020}+\left(xy+yz+xz-4500\right)^{2018}\ge0\)
Dấu bằng xảy ra <=>
\(\begin{cases}7x=5y\\3x=2z\\xy+yz+xz=4500\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{y}{7}\\\frac{x}{2}=\frac{z}{3}\\xy+yz+xz=4500\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{14}\\\frac{x}{10}=\frac{z}{15}\\xy+yz+xz=4500\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{14}=\frac{z}{15}\\x+y+z=4500\end{cases}}\)
Đặt \(\frac{x}{10}=\frac{y}{14}=\frac{z}{15}=k\Rightarrow\hept{\begin{cases}x=10k\\y=14k\\z=15k\end{cases}}\)
=> xy + yz + xz = 4500
<=> 10k.14k + 14k.15k + 10k.15k = 4500
=> 140.k2 + 210.k2 + 150.k2 = 4500
=> k2.(140 + 210 + 150) = 4500
=> k2 . 500 = 4500
=> k2 = 9
=> k = \(\pm3\)
Nếu k = 3
=> \(\hept{\begin{cases}x=30\\y=42\\z=45\end{cases}}\)
Nếu k = - 3
=> \(\hept{\begin{cases}x=-30\\y=-42\\z=-45\end{cases}}\)
Gọi 3 phần cần tìm là a, b, c.
Theo đề bài: a+b+c=1(l)=1000(ml)=1000cm3
a:b:c=1,2:2,3:1,5
Suy ra: \(\frac{a}{1,2}=\frac{b}{2,3}=\frac{c}{1,5}=\frac{a+b+c}{1,2+2,3+1,5}=\frac{1000}{5}=200\)
Nên: \(\frac{a}{1,2}=200\Rightarrow a=200.1,2=240\)
\(\frac{b}{2,3}=200\Rightarrow b=200.2,3=460\)
\(\frac{c}{1,5}=200\Rightarrow c=200.1,5=300\)
Vậy: 3 phần cần chia là : 240 cm3; 460 cm3; 300 cm3.
a) Tính BC:
Ta có: Aˆ=90oA^=90o (ΔABC vuông tại A) {o là độ}
Áp dụng định lí PITAGO đối với ΔABC:
Ta có: BC2 = AB2 + AC2
=> BC2 = 62 + 82
=> BC2 = 100
=> BC =100−−−√=10(cm)100=10(cm)
b) ΔABK là tam giác...:
Ta có:
BK (BD) là đường phân giác của góc B (1)
AE vuông góc với BK (BD)
=> BK là đường vuông góc (2)
Từ (1) và (2):
=> ABK là tam giác cân (vì tam giác có đường phân giác đồng thời là đường cao là tam giác cân)
c) DK ⊥ BC:
Vì ΔKED vuông tại E (do AE ⊥ BD)
Ta có: E=90o⇒EKDˆ+KDEˆ=90oE=90o⇒EKD^+KDE^=90o
Áp dụng tính chất góc ngoài của tam giác bằng tổng hai góc trong không kề với nó:
⇒DKCˆ=EKDˆ+KDEˆ=90o
hay DK ⊥ BC.
y = f(x) = m.x
f(1/2) = m.1/2 = 2
m = 2 : 1/2
m = 4
=> m = 4