Tìm các giá trị nguyên của x để biểu thức \(\frac{7}{x^2-x+1}\) có giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


đặt \(\frac{x-y}{z}=a;\frac{y-z}{x}=b;\frac{z-x}{y}=c\)
\(\Rightarrow\)\(\frac{z}{x-y}=\frac{1}{a};\frac{x}{y-z}=\frac{1}{b};\frac{y}{z-x}=\frac{1}{c}\)
Ta có : \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(A=1+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+1+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+1=3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
Ta có : \(\frac{b+c}{a}=\left(b+c\right)\frac{1}{a}=\left(\frac{y-z}{x}+\frac{z-x}{y}\right)\frac{z}{x-y}=\frac{y^2-yz+xz-x^2}{xy}.\frac{z}{x-y}=\frac{\left(y-x\right)\left(x+y-z\right)}{xy}.\frac{z}{x-y}=\frac{\left(z-x-y\right)z}{xy}=\frac{2z^2}{xy}\)vì x + y + z = 0 \(\Rightarrow\)z = -x - y
Tương tự : \(\frac{a+c}{b}=\frac{2x^2}{yz}\); \(\frac{a+b}{c}=\frac{2y^2}{xz}\)
\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2z^2}{xy}+\frac{2x^2}{yz}+\frac{2y^2}{xz}=\frac{2\left(x^3+y^3+z^3\right)}{xyz}=\frac{2.3xyz}{xyz}=6\)( vì x + y + z = 0 \(\Rightarrow\)x3 + y3 + z3 = 3xyz )
Vậy A = 3 + 6 = 9

Gọi độ dài quãng đường AB là x (km) (x > 0)
Thời gian xe đạp đi là: \(\frac{x}{12}\) (h)
Thời gian xe máy đi là: \(\frac{x}{30}\left(h\right)\)
Thời gian xe đạp đi nhiều hơn xe máy là:
3 giờ + 15 phút = 3 giờ 15 phút \(=\frac{13}{4}\) (giờ)
Ta có: \(\frac{x}{12}-\frac{x}{30}=\frac{13}{4}\)
\(\Leftrightarrow\frac{5x-2x}{60}=\frac{195}{60}\Leftrightarrow5x-2x=195\Leftrightarrow x=65\) (thỏa mãn)
Vậy quãng đường AB dài 65 km

Giải
Ta chia hình ngũ giác MNOPQ thành hình thang MNOQ và hình tam giác MPQ.
Diện tích hình thang MNOQ là : \(S=\frac{1}{2}\left(\text{QM}+\text{ON}\right)\text{H}_2\text{O}=\frac{1}{2}\left(5+3\right)\cdot2=8\left(cm^2\right)\)
Diện tích tam giác MPQ là : \(S=\frac{1}{2}\cdot\text{QM}\cdot\text{PH}_1=\frac{1}{2}\cdot5\cdot1,5=3,75\left(cm^2\right)\)
Vậy diện tích hình ngũ giác MNOPQ là : \(8+3,75=11,75\left(cm^2\right)\).

a)\((x^2- 4).(x^2 - 10) = 72 Đặt x^2 - 7 = a(1), ta có (a+3)(a-3)=72 a^2-9=72 a^2=81 a=+-9 xét 2 trường hợp a = 9 và -9 khi thay vào (1) ta có..... tự lm nốt nha \)
b) nhóm x+1 vs x+4 và x+2 vs x+3 ta sẽ có (x2+5x+4)(x2+5x+6)(x+5)=40

\(x^3-3x+2=x^3-x-2x+2=x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left[x\left(x+1\right)-2\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\Leftrightarrow x=1\\x\left(x+1\right)-2=0\end{cases}}\)
\(x\left(x+1\right)-2=0\Leftrightarrow x^2+x-2=0\Leftrightarrow x^2+x+\frac{1}{4}-\frac{9}{4}=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=\frac{9}{4}\Leftrightarrow x+\frac{1}{2}=\pm\frac{3}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy.......
\(x^3-3x+2=0\Leftrightarrow x^2\left(x-1\right)+x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x+2\right)-\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

-20=-20
16-36=25-45
42-4.9=52-5.9
42-2.4.9292+814814=52-2.5.9292+814814
(4−92)2(4−92)2=(5−92)2(5−92)2
4-9292=5-9292
4=5
4-4=5-4
0=1
Luôn có: (a-b)2=(b-a)2
\(\Leftrightarrow\)a-b=b-a\(\Leftrightarrow\)2a=2b\(\Leftrightarrow\)a=b
Ta chọn: a=0 và b=1 \(\rightarrow\)0=1
Vậy 0=1
Vì để 7/ (x^2-x+1) nguyên thì x^2-x+1 thuộc ước của 7 nên ta có
Vậy phương trình có tập nghiệm s={3;0;-2}
nhớ k nha
vì sao mà tính dc x^2-x+1=7 mà ra x=3:-2 dc